commit
f7a06f17d8
@ -0,0 +1,120 @@
|
||||
# /usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
|
||||
"""
|
||||
import paddle.v2.dataset.common
|
||||
import tarfile
|
||||
import Queue
|
||||
import re
|
||||
import string
|
||||
import threading
|
||||
|
||||
__all__ = ['build_dict', 'train', 'test']
|
||||
|
||||
URL = 'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz'
|
||||
MD5 = '7c2ac02c03563afcf9b574c7e56c153a'
|
||||
|
||||
|
||||
# Read files that match pattern. Tokenize and yield each file.
|
||||
def tokenize(pattern):
|
||||
with tarfile.open(paddle.v2.dataset.common.download(URL, 'imdb',
|
||||
MD5)) as tarf:
|
||||
# Note that we should use tarfile.next(), which does
|
||||
# sequential access of member files, other than
|
||||
# tarfile.extractfile, which does random access and might
|
||||
# destroy hard disks.
|
||||
tf = tarf.next()
|
||||
while tf != None:
|
||||
if bool(pattern.match(tf.name)):
|
||||
# newline and punctuations removal and ad-hoc tokenization.
|
||||
yield tarf.extractfile(tf).read().rstrip("\n\r").translate(
|
||||
None, string.punctuation).lower().split()
|
||||
tf = tarf.next()
|
||||
|
||||
|
||||
def build_dict(pattern, cutoff):
|
||||
word_freq = {}
|
||||
for doc in tokenize(pattern):
|
||||
for word in doc:
|
||||
paddle.v2.dataset.common.dict_add(word_freq, word)
|
||||
|
||||
# Not sure if we should prune less-frequent words here.
|
||||
word_freq = filter(lambda x: x[1] > cutoff, word_freq.items())
|
||||
|
||||
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
|
||||
words, _ = list(zip(*dictionary))
|
||||
word_idx = dict(zip(words, xrange(len(words))))
|
||||
word_idx['<unk>'] = len(words)
|
||||
return word_idx
|
||||
|
||||
|
||||
def reader_creator(pos_pattern, neg_pattern, word_idx, buffer_size):
|
||||
UNK = word_idx['<unk>']
|
||||
|
||||
qs = [Queue.Queue(maxsize=buffer_size), Queue.Queue(maxsize=buffer_size)]
|
||||
|
||||
def load(pattern, queue):
|
||||
for doc in tokenize(pattern):
|
||||
queue.put(doc)
|
||||
queue.put(None)
|
||||
|
||||
def reader():
|
||||
# Creates two threads that loads positive and negative samples
|
||||
# into qs.
|
||||
t0 = threading.Thread(
|
||||
target=load, args=(
|
||||
pos_pattern,
|
||||
qs[0], ))
|
||||
t0.daemon = True
|
||||
t0.start()
|
||||
|
||||
t1 = threading.Thread(
|
||||
target=load, args=(
|
||||
neg_pattern,
|
||||
qs[1], ))
|
||||
t1.daemon = True
|
||||
t1.start()
|
||||
|
||||
# Read alternatively from qs[0] and qs[1].
|
||||
i = 0
|
||||
doc = qs[i].get()
|
||||
while doc != None:
|
||||
yield [word_idx.get(w, UNK) for w in doc], i % 2
|
||||
i += 1
|
||||
doc = qs[i % 2].get()
|
||||
|
||||
# If any queue is empty, reads from the other queue.
|
||||
i += 1
|
||||
doc = qs[i % 2].get()
|
||||
while doc != None:
|
||||
yield [word_idx.get(w, UNK) for w in doc], i % 2
|
||||
doc = qs[i % 2].get()
|
||||
|
||||
return reader()
|
||||
|
||||
|
||||
def train(word_idx):
|
||||
return reader_creator(
|
||||
re.compile("aclImdb/train/pos/.*\.txt$"),
|
||||
re.compile("aclImdb/train/neg/.*\.txt$"), word_idx, 1000)
|
||||
|
||||
|
||||
def test(word_idx):
|
||||
return reader_creator(
|
||||
re.compile("aclImdb/test/pos/.*\.txt$"),
|
||||
re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000)
|
@ -0,0 +1,79 @@
|
||||
"""
|
||||
imikolov's simple dataset: http://www.fit.vutbr.cz/~imikolov/rnnlm/
|
||||
"""
|
||||
import paddle.v2.dataset.common
|
||||
import tarfile
|
||||
|
||||
__all__ = ['train', 'test']
|
||||
|
||||
URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
|
||||
MD5 = '30177ea32e27c525793142b6bf2c8e2d'
|
||||
|
||||
|
||||
def word_count(f, word_freq=None):
|
||||
add = paddle.v2.dataset.common.dict_add
|
||||
if word_freq == None:
|
||||
word_freq = {}
|
||||
|
||||
for l in f:
|
||||
for w in l.strip().split():
|
||||
add(word_freq, w)
|
||||
add(word_freq, '<s>')
|
||||
add(word_freq, '<e>')
|
||||
|
||||
return word_freq
|
||||
|
||||
|
||||
def build_dict(train_filename, test_filename):
|
||||
with tarfile.open(
|
||||
paddle.v2.dataset.common.download(
|
||||
paddle.v2.dataset.imikolov.URL, 'imikolov',
|
||||
paddle.v2.dataset.imikolov.MD5)) as tf:
|
||||
trainf = tf.extractfile(train_filename)
|
||||
testf = tf.extractfile(test_filename)
|
||||
word_freq = word_count(testf, word_count(trainf))
|
||||
|
||||
TYPO_FREQ = 50
|
||||
word_freq = filter(lambda x: x[1] > TYPO_FREQ, word_freq.items())
|
||||
|
||||
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
|
||||
words, _ = list(zip(*dictionary))
|
||||
word_idx = dict(zip(words, xrange(len(words))))
|
||||
word_idx['<unk>'] = len(words)
|
||||
|
||||
return word_idx
|
||||
|
||||
|
||||
word_idx = {}
|
||||
|
||||
|
||||
def reader_creator(filename, n):
|
||||
global word_idx
|
||||
if len(word_idx) == 0:
|
||||
word_idx = build_dict('./simple-examples/data/ptb.train.txt',
|
||||
'./simple-examples/data/ptb.valid.txt')
|
||||
|
||||
def reader():
|
||||
with tarfile.open(
|
||||
paddle.v2.dataset.common.download(
|
||||
paddle.v2.dataset.imikolov.URL, 'imikolov',
|
||||
paddle.v2.dataset.imikolov.MD5)) as tf:
|
||||
f = tf.extractfile(filename)
|
||||
|
||||
UNK = word_idx['<unk>']
|
||||
for l in f:
|
||||
l = ['<s>'] + l.strip().split() + ['<e>']
|
||||
if len(l) >= n:
|
||||
l = [word_idx.get(w, UNK) for w in l]
|
||||
for i in range(n, len(l) + 1):
|
||||
yield tuple(l[i - n:i])
|
||||
|
||||
return reader
|
||||
|
||||
|
||||
def train(n):
|
||||
return reader_creator('./simple-examples/data/ptb.train.txt', n)
|
||||
|
||||
|
||||
def test(n):
|
||||
return reader_creator('./simple-examples/data/ptb.valid.txt', n)
|
@ -0,0 +1,43 @@
|
||||
import paddle.v2.dataset.imdb
|
||||
import unittest
|
||||
import re
|
||||
|
||||
TRAIN_POS_PATTERN = re.compile("aclImdb/train/pos/.*\.txt$")
|
||||
TRAIN_NEG_PATTERN = re.compile("aclImdb/train/neg/.*\.txt$")
|
||||
TRAIN_PATTERN = re.compile("aclImdb/train/.*\.txt$")
|
||||
|
||||
TEST_POS_PATTERN = re.compile("aclImdb/test/pos/.*\.txt$")
|
||||
TEST_NEG_PATTERN = re.compile("aclImdb/test/neg/.*\.txt$")
|
||||
TEST_PATTERN = re.compile("aclImdb/test/.*\.txt$")
|
||||
|
||||
|
||||
class TestIMDB(unittest.TestCase):
|
||||
word_idx = None
|
||||
|
||||
def test_build_dict(self):
|
||||
if self.word_idx == None:
|
||||
self.word_idx = paddle.v2.dataset.imdb.build_dict(TRAIN_PATTERN,
|
||||
150)
|
||||
|
||||
self.assertEqual(len(self.word_idx), 7036)
|
||||
|
||||
def check_dataset(self, dataset, expected_size):
|
||||
if self.word_idx == None:
|
||||
self.word_idx = paddle.v2.dataset.imdb.build_dict(TRAIN_PATTERN,
|
||||
150)
|
||||
|
||||
sum = 0
|
||||
for l in dataset(self.word_idx):
|
||||
self.assertEqual(l[1], sum % 2)
|
||||
sum += 1
|
||||
self.assertEqual(sum, expected_size)
|
||||
|
||||
def test_train(self):
|
||||
self.check_dataset(paddle.v2.dataset.imdb.train, 25000)
|
||||
|
||||
def test_test(self):
|
||||
self.check_dataset(paddle.v2.dataset.imdb.test, 25000)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,20 @@
|
||||
import paddle.v2.dataset.imikolov
|
||||
import unittest
|
||||
|
||||
|
||||
class TestMikolov(unittest.TestCase):
|
||||
def check_reader(self, reader, n):
|
||||
for l in reader():
|
||||
self.assertEqual(len(l), n)
|
||||
|
||||
def test_train(self):
|
||||
n = 5
|
||||
self.check_reader(paddle.v2.dataset.imikolov.train(n), n)
|
||||
|
||||
def test_test(self):
|
||||
n = 5
|
||||
self.check_reader(paddle.v2.dataset.imikolov.test(n), n)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue