@ -99,11 +99,3 @@ In PaddlePaddle, training is just to get a collection of model parameters, which
Although starts from a random guess, you can see that value of ``w`` changes quickly towards 2 and ``b`` changes quickly towards 0.3. In the end, the predicted line is almost identical with real answer.
There, you have recovered the underlying pattern between ``X`` and ``Y`` only from observed data.
5. Where to Go from Here
-------------------------
- `Install and Build <../build_and_install/index.html>`_
If you already have a local PaddlePaddle repo and have not initialized the submodule, your local submodule folder will be empty. You can simply run the last line of the above codes in your PaddlePaddle home directory to initialize your submodule folder.
If you have already initialized your submodule and you would like to sync with the upstream submodule repo, you can run the following command
```
git submodule update --remote
```
## <spanid="requirements">Requirements</span>
To compile the source code, your computer must be equipped with the following dependencies.
@ -30,7 +30,7 @@ Then at the :code:`process` function, each :code:`yield` function will return th
yield src_ids, trg_ids, trg_ids_next
For more details description of how to write a data provider, please refer to `PyDataProvider2 <../../ui/data_provider/index.html>`_. The full data provider file is located at :code:`demo/seqToseq/dataprovider.py`.
For more details description of how to write a data provider, please refer to :ref:`api_pydataprovider2_en`. The full data provider file is located at :code:`demo/seqToseq/dataprovider.py`.
===============================================
Configure Recurrent Neural Network Architecture
@ -106,7 +106,7 @@ We will use the sequence to sequence model with attention as an example to demon
In this model, the source sequence :math:`S = \{s_1, \dots, s_T\}` is encoded with a bidirectional gated recurrent neural networks. The hidden states of the bidirectional gated recurrent neural network :math:`H_S = \{H_1, \dots, H_T\}` is called *encoder vector* The decoder is a gated recurrent neural network. When decoding each token :math:`y_t`, the gated recurrent neural network generates a set of weights :math:`W_S^t = \{W_1^t, \dots, W_T^t\}`, which are used to compute a weighted sum of the encoder vector. The weighted sum of the encoder vector is utilized to condition the generation of the token :math:`y_t`.
The encoder part of the model is listed below. It calls :code:`grumemory` to represent gated recurrent neural network. It is the recommended way of using recurrent neural network if the network architecture is simple, because it is faster than :code:`recurrent_group`. We have implemented most of the commonly used recurrent neural network architectures, you can refer to `Layers <../../ui/api/trainer_config_helpers/layers_index.html>`_ for more details.
The encoder part of the model is listed below. It calls :code:`grumemory` to represent gated recurrent neural network. It is the recommended way of using recurrent neural network if the network architecture is simple, because it is faster than :code:`recurrent_group`. We have implemented most of the commonly used recurrent neural network architectures, you can refer to :ref:`api_trainer_config_helpers_layers` for more details.
We also project the encoder vector to :code:`decoder_size` dimensional space, get the first instance of the backward recurrent network, and project it to :code:`decoder_size` dimensional space:
@ -246,6 +246,6 @@ The code is listed below:
outputs(beam_gen)
Notice that this generation technique is only useful for decoder like generation process. If you are working on sequence tagging tasks, please refer to `Semantic Role Labeling Demo <../../demo/semantic_role_labeling/index.html>`_ for more details.
Notice that this generation technique is only useful for decoder like generation process. If you are working on sequence tagging tasks, please refer to :ref:`semantic_role_labeling_en` for more details.
The full configuration file is located at :code:`demo/seqToseq/seqToseq_net.py`.