|
|
|
@ -66,15 +66,15 @@ public:
|
|
|
|
|
real* inputData = inputs[0].data<real>();
|
|
|
|
|
real* filterData = inputs[1].data<real>();
|
|
|
|
|
real* outputData = outputs[0].data<real>();
|
|
|
|
|
bool skipIm2col = isSkipIm2col(filter);
|
|
|
|
|
bool needIm2col = isNeedIm2col(filter);
|
|
|
|
|
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
|
|
|
|
|
TensorShape colShape;
|
|
|
|
|
real *colBuffer, *colData = NULL;
|
|
|
|
|
real* colData = NULL;
|
|
|
|
|
|
|
|
|
|
if (!skipIm2col) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
@ -93,8 +93,7 @@ public:
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
|
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
|
|
|
colBuffer = inputData + g * inputOffset;
|
|
|
|
|
if (!skipIm2col) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
im2col(inputData + g * inputOffset,
|
|
|
|
|
imShape,
|
|
|
|
|
colData,
|
|
|
|
@ -103,7 +102,8 @@ public:
|
|
|
|
|
strideW(),
|
|
|
|
|
paddingH(),
|
|
|
|
|
paddingW());
|
|
|
|
|
colBuffer = colData;
|
|
|
|
|
} else {
|
|
|
|
|
colData = inputData + g * inputOffset;
|
|
|
|
|
}
|
|
|
|
|
int M = outputChannels / groups_;
|
|
|
|
|
int N = outputHeight * outputWidth;
|
|
|
|
@ -116,7 +116,7 @@ public:
|
|
|
|
|
1.0f,
|
|
|
|
|
filterData + g * filterOffset,
|
|
|
|
|
K,
|
|
|
|
|
colBuffer,
|
|
|
|
|
colData,
|
|
|
|
|
N,
|
|
|
|
|
beta,
|
|
|
|
|
outputData + g * outputOffset,
|
|
|
|
@ -169,15 +169,15 @@ public:
|
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
|
|
|
real* filterData = inputs[1].data<real>();
|
|
|
|
|
real* inputGrad = outputs[0].data<real>();
|
|
|
|
|
bool skipIm2col = isSkipIm2col(filter);
|
|
|
|
|
bool needIm2col = isNeedIm2col(filter);
|
|
|
|
|
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
|
|
|
|
|
TensorShape colShape;
|
|
|
|
|
real *colBuffer, *colData = NULL;
|
|
|
|
|
real* colData = NULL;
|
|
|
|
|
|
|
|
|
|
if (!skipIm2col) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
@ -200,10 +200,9 @@ public:
|
|
|
|
|
int K = outputChannels / groups_;
|
|
|
|
|
int N = outputHeight * outputWidth;
|
|
|
|
|
int M = inputChannels / groups_ * filterHeight * filterWidth;
|
|
|
|
|
colBuffer = colData;
|
|
|
|
|
real scale = 0.0f;
|
|
|
|
|
if (skipIm2col) {
|
|
|
|
|
colBuffer = inputGrad + g * inputOffset;
|
|
|
|
|
if (!needIm2col) {
|
|
|
|
|
colData = inputGrad + g * inputOffset;
|
|
|
|
|
scale = 1.0f;
|
|
|
|
|
}
|
|
|
|
|
gemm(CblasTrans,
|
|
|
|
@ -217,12 +216,12 @@ public:
|
|
|
|
|
outputGrad + g * outputOffset,
|
|
|
|
|
N,
|
|
|
|
|
scale,
|
|
|
|
|
colBuffer,
|
|
|
|
|
colData,
|
|
|
|
|
N);
|
|
|
|
|
if (!skipIm2col) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
col2im(inputGrad + g * inputOffset,
|
|
|
|
|
imShape,
|
|
|
|
|
colBuffer,
|
|
|
|
|
colData,
|
|
|
|
|
colShape,
|
|
|
|
|
strideH(),
|
|
|
|
|
strideW(),
|
|
|
|
@ -281,15 +280,15 @@ public:
|
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
|
|
|
real* inputData = inputs[1].data<real>();
|
|
|
|
|
real* filterGrad = outputs[0].data<real>();
|
|
|
|
|
bool skipIm2col = isSkipIm2col(filter);
|
|
|
|
|
bool needIm2col = isNeedIm2col(filter);
|
|
|
|
|
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
|
|
|
|
|
TensorShape colShape;
|
|
|
|
|
real *colBuffer, *colData = NULL;
|
|
|
|
|
real* colData = NULL;
|
|
|
|
|
|
|
|
|
|
if (!skipIm2col) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
@ -307,8 +306,7 @@ public:
|
|
|
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
|
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
|
|
|
colBuffer = inputData + g * inputOffset;
|
|
|
|
|
if (!skipIm2col) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
im2col(inputData + g * inputOffset,
|
|
|
|
|
imShape,
|
|
|
|
|
colData,
|
|
|
|
@ -317,7 +315,8 @@ public:
|
|
|
|
|
strideW(),
|
|
|
|
|
paddingH(),
|
|
|
|
|
paddingW());
|
|
|
|
|
colBuffer = colData;
|
|
|
|
|
} else {
|
|
|
|
|
colData = inputData + g * inputOffset;
|
|
|
|
|
}
|
|
|
|
|
int M = outputChannels / groups_;
|
|
|
|
|
int K = outputHeight * outputWidth;
|
|
|
|
@ -330,7 +329,7 @@ public:
|
|
|
|
|
1.0f,
|
|
|
|
|
outputGrad + g * outputOffset,
|
|
|
|
|
K,
|
|
|
|
|
colBuffer,
|
|
|
|
|
colData,
|
|
|
|
|
K,
|
|
|
|
|
i == 0 ? beta : 1.0f,
|
|
|
|
|
filterGrad + g * filterOffset,
|
|
|
|
|