[NPU] Support NPU kernel of stack op (#31711)
parent
d55120d77f
commit
faf40da585
@ -0,0 +1,106 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_ASCEND_CL
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/operators/activation_op.h"
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
#include "paddle/fluid/operators/stack_op.h"
|
||||
#include "paddle/fluid/operators/unsqueeze_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class StackNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto x = ctx.MultiInput<Tensor>("X");
|
||||
int32_t N = x.size();
|
||||
|
||||
PADDLE_ENFORCE_GT(
|
||||
N, 0, platform::errors::InvalidArgument("number of input Tensor <= 0"));
|
||||
|
||||
std::vector<paddle::framework::Tensor> x_list;
|
||||
for (int i = 0; i < N; i++) {
|
||||
x_list.push_back(*x[i]);
|
||||
}
|
||||
|
||||
int axis = ctx.Attr<int>("axis");
|
||||
|
||||
if (axis < 0) {
|
||||
axis = axis + x_list[0].dims().size() + 1;
|
||||
}
|
||||
auto* out = ctx.Output<Tensor>("Y");
|
||||
|
||||
auto place = ctx.GetPlace();
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
|
||||
out->mutable_data<T>(place);
|
||||
|
||||
if (axis != 0) {
|
||||
auto x_dim = x_list[0].dims();
|
||||
std::vector<int> vec_dim_tmp;
|
||||
vec_dim_tmp.push_back(N);
|
||||
for (auto i = 0; i < x_dim.size(); ++i) {
|
||||
vec_dim_tmp.push_back(x_dim[i]);
|
||||
}
|
||||
|
||||
Tensor tmp_stack(out->type());
|
||||
tmp_stack.Resize(framework::make_ddim(vec_dim_tmp));
|
||||
tmp_stack.mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto runner =
|
||||
NpuOpRunner("Pack", {x_list}, {tmp_stack}, {{"axis", 0}, {"N", N}});
|
||||
runner.Run(stream);
|
||||
|
||||
std::vector<int64_t> vec_trans;
|
||||
for (auto i = 1; i <= x_dim.size(); ++i) {
|
||||
vec_trans.push_back(i);
|
||||
if (i == axis) {
|
||||
vec_trans.push_back(0);
|
||||
}
|
||||
}
|
||||
|
||||
auto runner_trans_final =
|
||||
NpuOpRunner("TransposeD", {tmp_stack}, {*out}, {{"perm", vec_trans}});
|
||||
runner_trans_final.Run(stream);
|
||||
|
||||
} else {
|
||||
auto runner =
|
||||
NpuOpRunner("Pack", {x_list}, {*out}, {{"axis", axis}, {"N", N}});
|
||||
runner.Run(stream);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
stack, ops::StackNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::StackNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
||||
|
||||
#endif
|
@ -0,0 +1,153 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestStack1(OpTest):
|
||||
def initDefaultParameters(self):
|
||||
self.num_inputs = 4
|
||||
self.input_dim = (5, 6, 7)
|
||||
self.axis = 0
|
||||
self.dtype = 'float32'
|
||||
|
||||
def get_x_names(self):
|
||||
x_names = []
|
||||
for i in range(self.num_inputs):
|
||||
x_names.append('x{}'.format(i))
|
||||
return x_names
|
||||
|
||||
def setUp(self):
|
||||
self.initDefaultParameters()
|
||||
self.set_npu()
|
||||
self.op_type = "stack"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.x = []
|
||||
for i in range(self.num_inputs):
|
||||
self.x.append(
|
||||
np.random.random(size=self.input_dim).astype(self.dtype))
|
||||
|
||||
tmp = []
|
||||
x_names = self.get_x_names()
|
||||
for i in range(self.num_inputs):
|
||||
tmp.append((x_names[i], self.x[i]))
|
||||
|
||||
self.inputs = {'X': tmp}
|
||||
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
|
||||
self.attrs = {'axis': self.axis}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
class TestStack2(OpTest):
|
||||
def initDefaultParameters(self):
|
||||
self.num_inputs = 4
|
||||
self.input_dim = (2, 3, 4)
|
||||
self.axis = -1
|
||||
self.dtype = 'float32'
|
||||
|
||||
def get_x_names(self):
|
||||
x_names = []
|
||||
for i in range(self.num_inputs):
|
||||
x_names.append('x{}'.format(i))
|
||||
return x_names
|
||||
|
||||
def setUp(self):
|
||||
self.initDefaultParameters()
|
||||
self.set_npu()
|
||||
self.op_type = "stack"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.x = []
|
||||
for i in range(self.num_inputs):
|
||||
self.x.append(
|
||||
np.random.random(size=self.input_dim).astype(self.dtype))
|
||||
|
||||
tmp = []
|
||||
x_names = self.get_x_names()
|
||||
for i in range(self.num_inputs):
|
||||
tmp.append((x_names[i], self.x[i]))
|
||||
|
||||
self.inputs = {'X': tmp}
|
||||
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
|
||||
self.attrs = {'axis': self.axis}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
class TestStack3(OpTest):
|
||||
def initDefaultParameters(self):
|
||||
self.num_inputs = 4
|
||||
self.input_dim = (2, 3, 4)
|
||||
self.axis = 1
|
||||
self.dtype = 'float32'
|
||||
|
||||
def get_x_names(self):
|
||||
x_names = []
|
||||
for i in range(self.num_inputs):
|
||||
x_names.append('x{}'.format(i))
|
||||
return x_names
|
||||
|
||||
def setUp(self):
|
||||
self.initDefaultParameters()
|
||||
self.set_npu()
|
||||
self.op_type = "stack"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.x = []
|
||||
for i in range(self.num_inputs):
|
||||
self.x.append(
|
||||
np.random.random(size=self.input_dim).astype(self.dtype))
|
||||
|
||||
tmp = []
|
||||
x_names = self.get_x_names()
|
||||
for i in range(self.num_inputs):
|
||||
tmp.append((x_names[i], self.x[i]))
|
||||
|
||||
self.inputs = {'X': tmp}
|
||||
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
|
||||
self.attrs = {'axis': self.axis}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue