|
|
|
@ -29,6 +29,79 @@ using mkldnn::stream;
|
|
|
|
|
using platform::to_void_cast;
|
|
|
|
|
using platform::GetMKLDNNFormat;
|
|
|
|
|
|
|
|
|
|
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
|
|
|
|
|
public:
|
|
|
|
|
ConvMKLDNNHandler(
|
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
|
|
|
|
|
const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
|
|
|
|
|
const std::string& base_key)
|
|
|
|
|
: platform::MKLDNNHandler(dev_ctx, engine, base_key) {
|
|
|
|
|
conv_pd_ = conv_pd;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
|
|
|
|
|
return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
|
|
|
|
|
"@dst_mem_p");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
|
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_memory_p,
|
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) {
|
|
|
|
|
auto src_pd = conv_pd_->src_primitive_desc();
|
|
|
|
|
auto user_pd = user_memory_p->get_primitive_desc();
|
|
|
|
|
return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
|
|
|
|
|
pipeline);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
|
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
|
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) {
|
|
|
|
|
auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
|
|
|
|
|
auto weights_pd = conv_pd_->weights_primitive_desc();
|
|
|
|
|
return this->AcquireMemory(weights_pd, user_weights_pd,
|
|
|
|
|
user_weights_memory_p, "@weights_mem_p",
|
|
|
|
|
pipeline);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
|
|
|
|
|
std::shared_ptr<mkldnn::memory> src_memory_p,
|
|
|
|
|
std::shared_ptr<mkldnn::memory> weights_memory_p,
|
|
|
|
|
std::shared_ptr<mkldnn::memory> dst_memory_p) {
|
|
|
|
|
auto prim_key = key_ + "@conv_p";
|
|
|
|
|
auto prim_desc_key = key_ + "@conv_pd";
|
|
|
|
|
auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
|
|
|
|
|
dev_ctx_.GetBlob(prim_key));
|
|
|
|
|
PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
|
|
|
|
|
"Fail to find convolution primitive in device context");
|
|
|
|
|
if (conv_p == nullptr) {
|
|
|
|
|
conv_p = std::make_shared<mkldnn::convolution_forward>(
|
|
|
|
|
*conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
|
|
|
|
|
*(dst_memory_p.get()));
|
|
|
|
|
|
|
|
|
|
dev_ctx_.SetBlob(prim_key, conv_p);
|
|
|
|
|
} else {
|
|
|
|
|
is_reusing_ = true;
|
|
|
|
|
}
|
|
|
|
|
return conv_p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Generate keys for storing/retriving primitives for this operator
|
|
|
|
|
// TODO(jczaja): Make hashing function more optimial
|
|
|
|
|
static std::string GetHash(memory::dims& input_dims,
|
|
|
|
|
memory::dims& weights_dims,
|
|
|
|
|
std::vector<int>& strides,
|
|
|
|
|
std::vector<int>& paddings,
|
|
|
|
|
std::vector<int>& dilations, int groups,
|
|
|
|
|
const std::string& suffix) {
|
|
|
|
|
return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
|
|
|
|
|
dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
|
|
|
|
|
suffix;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
@ -36,10 +109,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
|
|
|
"It must use CPUPlace.");
|
|
|
|
|
|
|
|
|
|
// Get unique name for index
|
|
|
|
|
const std::string key = ctx.op().Output("Output");
|
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
|
|
|
|
|
|
auto& dev_ctx =
|
|
|
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
|
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
@ -80,68 +149,62 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
|
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
|
|
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
|
|
|
auto user_src_memory = memory(
|
|
|
|
|
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
|
|
|
|
|
to_void_cast(input_data));
|
|
|
|
|
auto user_weights_memory =
|
|
|
|
|
memory({{{weights_tz}, memory::data_type::f32, filter->format()},
|
|
|
|
|
mkldnn_engine},
|
|
|
|
|
to_void_cast(filter_data));
|
|
|
|
|
// Get unique name for storing MKLDNN primitives
|
|
|
|
|
const std::string key = ConvMKLDNNHandler::GetHash(
|
|
|
|
|
src_tz, weights_tz, strides, paddings, dilations, groups,
|
|
|
|
|
ctx.op().Output("Output"));
|
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
|
|
|
|
|
|
std::vector<primitive> pipeline;
|
|
|
|
|
|
|
|
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
|
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
|
|
|
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
|
|
|
{weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
|
|
|
|
|
|
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
|
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
|
|
|
* the memory format preferred for best performance
|
|
|
|
|
*/
|
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
|
|
|
|
|
memory::format::any);
|
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
|
|
|
src_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
|
|
|
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
|
|
|
weights_tz, memory::data_type::f32, memory::format::any);
|
|
|
|
|
auto dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
|
|
|
|
|
memory::format::any);
|
|
|
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
|
|
|
|
|
auto dst_md = platform::MKLDNNMemDesc(
|
|
|
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
|
|
|
|
|
|
|
|
|
|
// create a conv primitive descriptor and save it for usage in backward
|
|
|
|
|
std::shared_ptr<conv_fwd::primitive_desc> conv_pd = ConvFwdPrimitiveDesc(
|
|
|
|
|
src_md, weights_md, dst_md, strides, paddings, mkldnn_engine);
|
|
|
|
|
// Save conv_pd/src_memory/weights_memory for backward pass
|
|
|
|
|
dev_ctx.SetBlob(key_conv_pd, conv_pd);
|
|
|
|
|
|
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
|
|
|
auto src_memory = user_src_memory;
|
|
|
|
|
primitive reorder_src;
|
|
|
|
|
bool is_src_reordered = false;
|
|
|
|
|
if (memory::primitive_desc(conv_pd->src_primitive_desc()) !=
|
|
|
|
|
user_src_memory.get_primitive_desc()) {
|
|
|
|
|
src_memory = memory(conv_pd->src_primitive_desc());
|
|
|
|
|
reorder_src = reorder(user_src_memory, src_memory);
|
|
|
|
|
is_src_reordered = true;
|
|
|
|
|
}
|
|
|
|
|
auto weights_memory = user_weights_memory;
|
|
|
|
|
primitive reorder_weights;
|
|
|
|
|
bool is_weights_reordered = false;
|
|
|
|
|
if (memory::primitive_desc(conv_pd->weights_primitive_desc()) !=
|
|
|
|
|
user_weights_memory.get_primitive_desc()) {
|
|
|
|
|
weights_memory = memory(conv_pd->weights_primitive_desc());
|
|
|
|
|
reorder_weights = reorder(user_weights_memory, weights_memory);
|
|
|
|
|
is_weights_reordered = true;
|
|
|
|
|
}
|
|
|
|
|
ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
|
|
|
|
|
|
|
|
|
|
// create memory primitive for conv dst
|
|
|
|
|
auto dst_memory = memory(conv_pd->dst_primitive_desc(), output_data);
|
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
|
|
|
auto user_src_memory_p =
|
|
|
|
|
handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
|
|
|
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
|
|
|
user_weights_md, to_void_cast<T>(filter_data));
|
|
|
|
|
|
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
|
|
|
auto src_memory_p =
|
|
|
|
|
handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
|
|
|
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
|
|
|
|
|
user_weights_memory_p, pipeline);
|
|
|
|
|
auto dst_memory_p =
|
|
|
|
|
handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
|
|
|
|
|
|
|
|
|
|
// create convolution op primitive
|
|
|
|
|
auto conv_prim = conv_fwd(*conv_pd, src_memory, weights_memory, dst_memory);
|
|
|
|
|
auto conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
|
|
|
|
|
dst_memory_p);
|
|
|
|
|
|
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
|
|
|
std::vector<primitive> pipeline;
|
|
|
|
|
if (is_src_reordered) pipeline.push_back(reorder_src);
|
|
|
|
|
if (is_weights_reordered) pipeline.push_back(reorder_weights);
|
|
|
|
|
pipeline.push_back(conv_prim);
|
|
|
|
|
pipeline.push_back(*conv_p);
|
|
|
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
|
|
|
|
|
|
// Save conv_pd/src_memory/weights_memory for backward pass
|
|
|
|
|
dev_ctx.SetBlob(key_conv_pd, conv_pd);
|
|
|
|
|
|
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
|
|
|
output->set_format(GetMKLDNNFormat(dst_memory));
|
|
|
|
|
output->set_format(GetMKLDNNFormat(*dst_memory_p));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
@ -197,13 +260,10 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
|
|
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
|
|
|
|
|
|
// Get an unique name from "argument" name of "Output" variable
|
|
|
|
|
// This name will be used as key when saving info into device context
|
|
|
|
|
const std::string key = ctx.op().Input("Output");
|
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
|
|
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
|
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
|
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
|
|
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
@ -223,6 +283,14 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
|
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
|
|
|
|
|
|
// Get an unique name from "argument" name of "Output" variable
|
|
|
|
|
// This name will be used as key when saving info into device context
|
|
|
|
|
const std::string key =
|
|
|
|
|
ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
|
|
|
|
|
dilations, groups, ctx.op().Input("Output"));
|
|
|
|
|
|
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
|
|
|
|
|
|
// create mkldnn memory from input tensors (input/weights/output_grad)
|
|
|
|
|
auto user_src_memory = memory(
|
|
|
|
|
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
|
|
|
|
|