|
|
|
@ -42,25 +42,25 @@ We provide the results of accuracy and performance measured on Intel(R) Xeon(R)
|
|
|
|
|
|
|
|
|
|
| Model | FP32 Accuracy | INT8 Accuracy | Accuracy Diff(FP32-INT8) |
|
|
|
|
|
| :----------: | :-------------: | :------------: | :--------------: |
|
|
|
|
|
| GoogleNet | 70.50% | 69.81% | 0.69% |
|
|
|
|
|
| MobileNet-V1 | 70.78% | 70.42% | 0.36% |
|
|
|
|
|
| MobileNet-V2 | 71.90% | 71.35% | 0.55% |
|
|
|
|
|
| ResNet-101 | 77.50% | 77.42% | 0.08% |
|
|
|
|
|
| ResNet-50 | 76.63% | 76.52% | 0.11% |
|
|
|
|
|
| VGG16 | 72.08% | 72.03% | 0.05% |
|
|
|
|
|
| VGG19 | 72.57% | 72.55% | 0.02% |
|
|
|
|
|
| GoogleNet | 70.50% | 70.08% | 0.42% |
|
|
|
|
|
| MobileNet-V1 | 70.78% | 70.41% | 0.37% |
|
|
|
|
|
| MobileNet-V2 | 71.90% | 71.34% | 0.56% |
|
|
|
|
|
| ResNet-101 | 77.50% | 77.43% | 0.07% |
|
|
|
|
|
| ResNet-50 | 76.63% | 76.57% | 0.06% |
|
|
|
|
|
| VGG16 | 72.08% | 72.05% | 0.03% |
|
|
|
|
|
| VGG19 | 72.57% | 72.57% | 0.00% |
|
|
|
|
|
|
|
|
|
|
>**II. Throughput on Intel(R) Xeon(R) Gold 6271 (batch size 1 on single core)**
|
|
|
|
|
|
|
|
|
|
| Model | FP32 Throughput(images/s) | INT8 Throughput(images/s) | Ratio(INT8/FP32)|
|
|
|
|
|
| :-----------:| :------------: | :------------: | :------------: |
|
|
|
|
|
| GoogleNet | 34.06 | 72.79 | 2.14 |
|
|
|
|
|
| MobileNet-V1 | 80.02 | 230.65 | 2.88 |
|
|
|
|
|
| MobileNet-V2 | 99.38 | 206.92 | 2.08 |
|
|
|
|
|
| ResNet-101 | 7.38 | 27.31 | 3.70 |
|
|
|
|
|
| ResNet-50 | 13.71 | 50.55 | 3.69 |
|
|
|
|
|
| VGG16 | 3.64 | 10.56 | 2.90 |
|
|
|
|
|
| VGG19 | 2.95 | 9.02 | 3.05 |
|
|
|
|
|
| GoogleNet | 32.76 | 67.43 | 2.06 |
|
|
|
|
|
| MobileNet-V1 | 73.96 | 218.82 | 2.96 |
|
|
|
|
|
| MobileNet-V2 | 87.94 | 193.70 | 2.20 |
|
|
|
|
|
| ResNet-101 | 7.17 | 26.37 | 3.42 |
|
|
|
|
|
| ResNet-50 | 13.26 | 48.72 | 3.67 |
|
|
|
|
|
| VGG16 | 3.47 | 10.10 | 2.91 |
|
|
|
|
|
| VGG19 | 2.82 | 8.68 | 3.07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* ## Prepare dataset
|
|
|
|
|