added test_ConvUnify

avx_docs
wangyang59 9 years ago
parent 98f4c76175
commit fd92594353

@ -34,7 +34,14 @@ add_unittest_without_exec(test_ConvTrans
add_test(NAME test_ConvTrans
COMMAND test_ConvTrans)
################# test_ConvUnify #######################
add_unittest_without_exec(test_ConvUnify
test_ConvUnify.cpp
LayerGradUtil.cpp
TestUtil.cpp)
add_test(NAME test_ConvUnify
COMMAND test_ConvUnify)
################## test_Evaluator #######################
add_unittest(test_Evaluator
test_Evaluator.cpp

@ -0,0 +1,133 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include <string>
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
#include "paddle/math/MathUtils.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_bool(prev_batch_state);
// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
MatrixPtr doOneConvTest(size_t imgSize, size_t output_x, size_t stride,
size_t padding, size_t filter_size, size_t channel,
size_t numfilters, MatrixPtr& inputData,
real* param, bool useGpu) {
TestConfig config;
config.biasSize = numfilters;
if (useGpu) {
config.layerConfig.set_type("cudnn_conv");
} else {
config.layerConfig.set_type("exconv");
}
config.layerConfig.set_num_filters(numfilters);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
config.inputDefs.push_back({INPUT_DATA, "layer_0",
imgSize * imgSize * channel,
channel* filter_size * filter_size * config.layerConfig.num_filters()});
LayerInputConfig* input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_filter_size(filter_size);
conv->set_filter_size_y(filter_size);
conv->set_channels(channel);
conv->set_padding(padding);
conv->set_padding_y(padding);
conv->set_stride(stride);
conv->set_stride_y(stride);
conv->set_groups(1);
conv->set_filter_channels(channel);
conv->set_img_size(imgSize);
conv->set_output_x(output_x);
config.layerConfig.set_size(conv->output_x() * conv->output_x() *
config.layerConfig.num_filters());
config.layerConfig.set_name("conv");
std::vector<DataLayerPtr> dataLayers;
LayerMap layerMap;
vector<Argument> datas;
initDataLayer(config, &dataLayers, &datas, &layerMap, "conv",
1, false, useGpu);
dataLayers[0]->getOutputValue()->zeroMem();
dataLayers[0]->getOutputValue()->copyFrom(*inputData);
// test layer initialize
std::vector<ParameterPtr> parameters;
LayerPtr convLayer;
initTestLayer(config, &layerMap, &parameters, &convLayer);
convLayer->getBiasParameter()->zeroMem();
convLayer->getParameters()[0]->zeroMem();
convLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->copyFrom(param, 18);
convLayer->forward(PASS_GC);
return convLayer->getOutputValue();
}
TEST(Layer, convTransLayerFwd2) {
MatrixPtr input, resultCpu, resultGpu;
input = Matrix::create(1, 4 * 4, false, false);
float inputData[] = {1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16};
float param[] = {1, 2, 3, 4, 5, 6, 7, 8, 9,
9, 8, 7, 6, 5, 4, 3, 2, 1};
input->setData(inputData);
resultCpu = doOneConvTest(/* imgSize */ 4,
/* output_x */ 2,
/* stride */ 1,
/* padding */ 0,
/* filter_size */ 3,
/*channel*/ 1,
/*numfilters*/ 2,
input, param, false);
resultGpu = doOneConvTest(/* imgSize */ 4,
/* output_x */ 2,
/* stride */ 1,
/* padding */ 0,
/* filter_size */ 3,
/*channel*/ 1,
/*numfilters*/ 2,
input, param, true);
checkMatrixEqual(resultCpu, resultGpu);
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
return RUN_ALL_TESTS();
}
Loading…
Cancel
Save