|
|
|
@ -41,10 +41,19 @@ class FCOp : public NetOp {
|
|
|
|
|
"The size of inputs X(%d) should be no less than 1.", n);
|
|
|
|
|
|
|
|
|
|
auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
|
|
|
|
|
"The size of attribute xNumColDims(%d) should be the "
|
|
|
|
|
"same as that of inputs X(%d).",
|
|
|
|
|
x_num_col_dims.size(), n);
|
|
|
|
|
|
|
|
|
|
// Set all values or set no values (use the default value)
|
|
|
|
|
if (!x_num_col_dims.empty()) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
|
|
|
|
|
"The size of attribute xNumColDims(%d) should be the "
|
|
|
|
|
"same as that of inputs X(%d).",
|
|
|
|
|
x_num_col_dims.size(), n);
|
|
|
|
|
} else {
|
|
|
|
|
x_num_col_dims.resize(n);
|
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
|
x_num_col_dims[i] = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// mul_out[i] = X[i] * W[i]
|
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
@ -81,7 +90,7 @@ class FCOp : public NetOp {
|
|
|
|
|
|
|
|
|
|
auto activation = Attr<std::string>("activation");
|
|
|
|
|
AppendOp(framework::OpRegistry::CreateOp(
|
|
|
|
|
activation, {{"X", {Output(add_out)}}}, {{"Y", {Output("Y")}}}, {}));
|
|
|
|
|
activation, {{"X", {Output(add_out)}}}, {{"Y", {Output("Out")}}}, {}));
|
|
|
|
|
CompleteAddOp(false);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
@ -105,7 +114,7 @@ class FCOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
"(Tensor) the bias of FC operator, a 1-D vector of size "
|
|
|
|
|
"number_of_neurons.");
|
|
|
|
|
|
|
|
|
|
AddOutput("Y",
|
|
|
|
|
AddOutput("Out",
|
|
|
|
|
"(Tensor) the activated output matrix of FC operator, a 2-D "
|
|
|
|
|
"matrix of size (minibatch, number_of_neurons).");
|
|
|
|
|
AddOutput("MulOut",
|
|
|
|
@ -137,7 +146,8 @@ class FCOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
"`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. "
|
|
|
|
|
"The matrix's second dimension (the length of row) will be the product "
|
|
|
|
|
"of `X_i`'s first `rank - xNumColDims_i` dimensions, that is "
|
|
|
|
|
"`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)");
|
|
|
|
|
"`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)")
|
|
|
|
|
.SetDefault(std::vector<int>{});
|
|
|
|
|
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
|
|
|
|
@ -148,13 +158,13 @@ learned weights with a matrix multiplication followed by a bias offset
|
|
|
|
|
(optionally).
|
|
|
|
|
|
|
|
|
|
Equation:
|
|
|
|
|
Y = Act(sum_n{X_i * W_i} + B)
|
|
|
|
|
Out = Act(sum_n{X_i * W_i} + B)
|
|
|
|
|
|
|
|
|
|
where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K),
|
|
|
|
|
usually M is the minibatch size and K is the number of input features.
|
|
|
|
|
W_i is a 2-D matrix of size (K x N), where N means the number of neurons
|
|
|
|
|
in the fully connected layer. B is a 1-D vector of size N.
|
|
|
|
|
Thus, the output Y is a 2-D matrix of size (M x N).
|
|
|
|
|
Thus, the output Out is a 2-D matrix of size (M x N).
|
|
|
|
|
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
|
|
|
|
|
)DOC");
|
|
|
|
|
}
|
|
|
|
|