commit
fe480b9ebe
@ -0,0 +1,29 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/framework/op_info.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
|
||||
static OpInfoMap* g_op_info_map = nullptr;
|
||||
|
||||
OpInfoMap& OpInfoMap::Instance() {
|
||||
if (g_op_info_map == nullptr) {
|
||||
g_op_info_map = new OpInfoMap();
|
||||
}
|
||||
return *g_op_info_map;
|
||||
}
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,101 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <functional>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "paddle/framework/attribute.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
class OperatorBase;
|
||||
using VariableNameMap = std::map<std::string, std::vector<std::string>>;
|
||||
|
||||
using OpCreator = std::function<OperatorBase*(
|
||||
const std::string& /*type*/, const VariableNameMap& /*inputs*/,
|
||||
const VariableNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
|
||||
|
||||
struct OpInfo {
|
||||
OpCreator creator_;
|
||||
std::string grad_op_type_;
|
||||
OpProto* proto_;
|
||||
OpAttrChecker* checker_;
|
||||
|
||||
bool HasOpProtoAndChecker() const {
|
||||
return proto_ != nullptr && checker_ != nullptr;
|
||||
}
|
||||
|
||||
const OpProto& Proto() const {
|
||||
PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered");
|
||||
PADDLE_ENFORCE(proto_->IsInitialized(),
|
||||
"Operator Proto must be initialized in op info");
|
||||
return *proto_;
|
||||
}
|
||||
|
||||
const OpAttrChecker& Checker() const {
|
||||
PADDLE_ENFORCE_NOT_NULL(checker_,
|
||||
"Operator Checker has not been registered");
|
||||
return *checker_;
|
||||
}
|
||||
|
||||
const OpCreator& Creator() const {
|
||||
PADDLE_ENFORCE_NOT_NULL(creator_,
|
||||
"Operator Creator has not been registered");
|
||||
return creator_;
|
||||
}
|
||||
|
||||
bool HasGradientOp() const { return !grad_op_type_.empty(); }
|
||||
};
|
||||
|
||||
class OpInfoMap {
|
||||
public:
|
||||
static OpInfoMap& Instance();
|
||||
|
||||
OpInfoMap(const OpInfoMap& o) = delete;
|
||||
OpInfoMap(OpInfoMap&& o) = delete;
|
||||
OpInfoMap& operator=(const OpInfoMap& o) = delete;
|
||||
OpInfoMap& operator=(OpInfoMap&& o) = delete;
|
||||
|
||||
bool Has(const std::string& op_type) const {
|
||||
return map_.find(op_type) != map_.end();
|
||||
}
|
||||
|
||||
void Insert(const std::string& type, const OpInfo& info) {
|
||||
PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type);
|
||||
map_.insert({type, info});
|
||||
}
|
||||
|
||||
const OpInfo& Get(const std::string& type) const {
|
||||
auto it = map_.find(type);
|
||||
PADDLE_ENFORCE(it != map_.end(), "Operator %s are not found", type);
|
||||
return it->second;
|
||||
}
|
||||
|
||||
template <typename Callback>
|
||||
void IterAllInfo(Callback callback) {
|
||||
for (auto& it : map_) {
|
||||
callback(it.first, it.second);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
OpInfoMap() = default;
|
||||
std::unordered_map<std::string, const OpInfo> map_;
|
||||
};
|
||||
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,105 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/scale_op.h"
|
||||
#include "paddle/operators/net_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class ScaleOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
ScaleOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto *in = ctx.Input<framework::Tensor>("X");
|
||||
auto *out = ctx.Output<framework::Tensor>("Out");
|
||||
out->Resize(in->dims());
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AttrType>
|
||||
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input tensor of scale operator.").NotInGradient();
|
||||
AddOutput("Out", "The output tensor of scale operator.").NotInGradient();
|
||||
AddComment(R"DOC(Scale operator
|
||||
|
||||
The equation is: Out = scale*X
|
||||
)DOC");
|
||||
AddAttr<AttrType>("scale", "scale of scale operator.").SetDefault(1.0);
|
||||
}
|
||||
};
|
||||
|
||||
// Identity Op's gradient is identity op, too.
|
||||
// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out))
|
||||
template <typename AttrType>
|
||||
class ScaleGradOp : public NetOp {
|
||||
public:
|
||||
ScaleGradOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: NetOp(type, inputs, outputs, attrs) {
|
||||
AppendOp(framework::OpRegistry::CreateOp(
|
||||
"scale", {{"X", {Input(framework::GradVarName("Out"))}}},
|
||||
{{"Out", {Output(framework::GradVarName("X"))}}},
|
||||
{{"scale", GetAttr<AttrType>("scale")}}));
|
||||
CompleteAddOp(false);
|
||||
}
|
||||
};
|
||||
|
||||
// identity is a alias of scale op. This is also a example for creating a alias
|
||||
// operator.
|
||||
template <typename AttrType>
|
||||
class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
IdentityOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "input tensor of identity op");
|
||||
AddOutput("Out", "output tensor of identity op");
|
||||
AddComment("identity operator. Just a alias of scale op which scale = 1.0");
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AttrType>
|
||||
class IdentityOp : public NetOp {
|
||||
public:
|
||||
IdentityOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: NetOp(type, inputs, outputs, attrs) {
|
||||
AppendOp(framework::OpRegistry::CreateOp(
|
||||
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
|
||||
{{"scale", static_cast<AttrType>(1)}}));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker<float>, scale_grad,
|
||||
ops::ScaleGradOp<float>);
|
||||
REGISTER_OP_CPU_KERNEL(scale,
|
||||
ops::ScaleKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp<float>,
|
||||
ops::IdentityOpMaker<float>);
|
@ -0,0 +1,18 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/scale_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
scale, paddle::operators::ScaleKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,40 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename Place, typename T, typename AttrType = T>
|
||||
class ScaleKernel : public framework::OpKernel {
|
||||
public:
|
||||
virtual void Compute(const framework::ExecutionContext& context) const {
|
||||
auto* tensor = context.Output<framework::Tensor>("Out");
|
||||
auto* in = context.Input<framework::Tensor>("X");
|
||||
tensor->mutable_data<T>(in->place());
|
||||
|
||||
auto scale = static_cast<T>(context.op_.GetAttr<AttrType>("scale"));
|
||||
|
||||
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
|
||||
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
|
||||
auto& dev = context.GetEigenDevice<Place>();
|
||||
eigen_out.device(dev) = scale * eigen_in;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,43 @@
|
||||
import unittest
|
||||
from op_test_util import OpTestMeta
|
||||
from gradient_checker import GradientChecker, create_op
|
||||
import numpy as np
|
||||
from paddle.v2.framework.op import Operator
|
||||
|
||||
|
||||
class IdentityTest(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "identity"
|
||||
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
|
||||
self.outputs = {'Out': self.inputs['X']}
|
||||
|
||||
|
||||
class IdentityGradOpTest(GradientChecker):
|
||||
def test_normal(self):
|
||||
op = create_op("identity")
|
||||
inputs = {"X": np.random.random((10, 10)).astype("float32")}
|
||||
self.check_grad(op, inputs, set("X"), "Out")
|
||||
|
||||
|
||||
class ScaleTest(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "scale"
|
||||
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
|
||||
self.attrs = {'scale': -2.3}
|
||||
self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']}
|
||||
|
||||
|
||||
class ScaleGradTest(GradientChecker):
|
||||
def test_normal(self):
|
||||
op = Operator("scale", X="X", Out="Out", scale=3.2)
|
||||
self.check_grad(op,
|
||||
{"X": np.random.random((10, 10)).astype("float32")},
|
||||
set("X"), "Out")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue