[WIP] Refine MultiDevSSAGraph (#15040)
* refine parallel_exe test=develop * rename shared_var_device * code refine * add test_weight_decay * remove Sort test=develop * Add SortForReduce test=develop * code refine test=develop * follow comment test=developrevert-15207-remove_op_handle_lock_and_fix_var
parent
85471533e0
commit
fe8495a758
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,188 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import contextlib
|
||||
|
||||
import unittest
|
||||
from functools import partial
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
def get_places():
|
||||
places = []
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(core.CUDAPlace(0))
|
||||
return places
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def prog_scope_guard(main_prog, startup_prog):
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(main_prog, startup_prog):
|
||||
yield
|
||||
|
||||
|
||||
def bow_net(data,
|
||||
label,
|
||||
dict_dim,
|
||||
is_sparse=False,
|
||||
emb_dim=128,
|
||||
hid_dim=128,
|
||||
hid_dim2=96,
|
||||
class_dim=2):
|
||||
"""
|
||||
BOW net
|
||||
This model is from https://github.com/PaddlePaddle/models:
|
||||
fluid/PaddleNLP/text_classification/nets.py
|
||||
"""
|
||||
emb = fluid.layers.embedding(
|
||||
input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
|
||||
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
|
||||
bow_tanh = fluid.layers.tanh(bow)
|
||||
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
|
||||
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
|
||||
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestWeightDecay(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.word_dict = paddle.dataset.imdb.word_dict()
|
||||
reader = paddle.batch(
|
||||
paddle.dataset.imdb.train(self.word_dict), batch_size=4)()
|
||||
self.train_data = [next(reader) for _ in range(5)]
|
||||
self.learning_rate = .5
|
||||
|
||||
def run_executor(self, place, feed_list, loss):
|
||||
exe = fluid.Executor(place)
|
||||
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
main_prog = fluid.default_main_program()
|
||||
loss_set = []
|
||||
for data in self.train_data:
|
||||
out = exe.run(main_prog,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[loss.name])
|
||||
|
||||
print("loss %s" % (np.average(out)))
|
||||
loss_set.append(np.average(out))
|
||||
|
||||
return loss_set
|
||||
|
||||
def run_parallel_exe(self,
|
||||
place,
|
||||
feed_list,
|
||||
loss,
|
||||
use_cuda=True,
|
||||
use_reduce=False,
|
||||
use_fast_executor=False,
|
||||
use_ir_memory_optimize=False):
|
||||
exe = fluid.Executor(place)
|
||||
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
exec_strategy = fluid.ExecutionStrategy()
|
||||
if use_fast_executor:
|
||||
exec_strategy.use_experimental_executor = True
|
||||
|
||||
build_strategy = fluid.BuildStrategy()
|
||||
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \
|
||||
if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce
|
||||
build_strategy.memory_optimize = use_ir_memory_optimize
|
||||
|
||||
parallel_exe = fluid.ParallelExecutor(
|
||||
use_cuda,
|
||||
loss_name=loss.name,
|
||||
exec_strategy=exec_strategy,
|
||||
build_strategy=build_strategy)
|
||||
|
||||
loss_set = []
|
||||
for data in self.train_data:
|
||||
out = parallel_exe.run(feed=feeder.feed(data),
|
||||
fetch_list=[loss.name])
|
||||
print("loss %s" % (np.average(out)))
|
||||
loss_set.append(np.average(out))
|
||||
|
||||
return loss_set
|
||||
|
||||
def check_weight_decay(self,
|
||||
place,
|
||||
model,
|
||||
use_parallel_exe=False,
|
||||
use_reduce=False):
|
||||
main_prog = fluid.framework.Program()
|
||||
startup_prog = fluid.framework.Program()
|
||||
startup_prog.random_seed = 1
|
||||
with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
|
||||
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
|
||||
avg_cost = model(data, label, len(self.word_dict))
|
||||
|
||||
param_list = [(var, var * self.learning_rate)
|
||||
for var in main_prog.block(0).all_parameters()]
|
||||
|
||||
optimizer = fluid.optimizer.Adagrad(
|
||||
learning_rate=self.learning_rate)
|
||||
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
for params in param_list:
|
||||
updated_p = fluid.layers.elementwise_sub(
|
||||
x=params[0], y=params[1])
|
||||
fluid.layers.assign(input=updated_p, output=params[0])
|
||||
|
||||
if use_parallel_exe:
|
||||
loss = self.run_parallel_exe(
|
||||
place, [data, label],
|
||||
loss=avg_cost,
|
||||
use_cuda=True,
|
||||
use_reduce=use_reduce)
|
||||
else:
|
||||
loss = self.run_executor(place, [data, label], loss=avg_cost)
|
||||
|
||||
return loss
|
||||
|
||||
def test_weight_decay(self):
|
||||
model = partial(bow_net, is_sparse=False)
|
||||
for place in get_places():
|
||||
loss = self.check_weight_decay(place, model, use_parallel_exe=False)
|
||||
|
||||
loss2 = self.check_weight_decay(
|
||||
place, model, use_parallel_exe=True, use_reduce=False)
|
||||
|
||||
for i in range(len(loss)):
|
||||
assert np.isclose(a=loss[i], b=loss2[i], rtol=5e-5)
|
||||
|
||||
loss3 = self.check_weight_decay(
|
||||
place, model, use_parallel_exe=True, use_reduce=True)
|
||||
|
||||
for i in range(len(loss)):
|
||||
assert np.isclose(a=loss[i], b=loss3[i], rtol=5e-5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue