|
|
|
@ -45,15 +45,6 @@ def npairloss(anchor, positive, labels, l2_reg=0.002):
|
|
|
|
|
return l2loss + celoss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_or_get_tensor(scope, var_name, var, place):
|
|
|
|
|
tensor = scope.var(var_name).get_tensor()
|
|
|
|
|
if var is not None:
|
|
|
|
|
assert isinstance(var, np.ndarray)
|
|
|
|
|
tensor.set_recursive_sequence_lengths([])
|
|
|
|
|
tensor.set(var, place)
|
|
|
|
|
return tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestNpairLossOp(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.dtype = np.float32
|
|
|
|
@ -61,10 +52,11 @@ class TestNpairLossOp(unittest.TestCase):
|
|
|
|
|
def __assert_close(self, tensor, np_array, msg, atol=1e-4):
|
|
|
|
|
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
|
|
|
|
|
|
|
|
|
|
def check_with_place(self, place, dtype, shape):
|
|
|
|
|
def test_npair_loss(self):
|
|
|
|
|
reg_lambda = 0.002
|
|
|
|
|
num_data, feat_dim, num_classes = shape[0], shape[1], shape[2]
|
|
|
|
|
num_data, feat_dim, num_classes = 18, 6, 3
|
|
|
|
|
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
embeddings_anchor = np.random.rand(num_data,
|
|
|
|
@ -79,49 +71,31 @@ class TestNpairLossOp(unittest.TestCase):
|
|
|
|
|
row_labels,
|
|
|
|
|
l2_reg=reg_lambda)
|
|
|
|
|
|
|
|
|
|
anchor_tensor = fluid.layers.data(
|
|
|
|
|
name='anchor',
|
|
|
|
|
shape=[num_data, feat_dim],
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
positive_tensor = fluid.layers.data(
|
|
|
|
|
name='positive',
|
|
|
|
|
shape=[num_data, feat_dim],
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
labels_tensor = fluid.layers.data(
|
|
|
|
|
name='labels_t',
|
|
|
|
|
shape=[num_data],
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
anc = fluid.layers.create_tensor(
|
|
|
|
|
dtype='float32', persistable=True, name='anc')
|
|
|
|
|
pos = fluid.layers.create_tensor(
|
|
|
|
|
dtype='float32', persistable=True, name='pos')
|
|
|
|
|
lab = fluid.layers.create_tensor(
|
|
|
|
|
dtype='float32', persistable=True, name='lab')
|
|
|
|
|
fluid.layers.assign(input=embeddings_anchor, output=anc)
|
|
|
|
|
fluid.layers.assign(input=embeddings_positive, output=pos)
|
|
|
|
|
fluid.layers.assign(input=row_labels, output=lab)
|
|
|
|
|
|
|
|
|
|
npair_loss_op = fluid.layers.npair_loss(
|
|
|
|
|
anchor=anchor_tensor,
|
|
|
|
|
positive=positive_tensor,
|
|
|
|
|
labels=labels_tensor,
|
|
|
|
|
l2_reg=reg_lambda)
|
|
|
|
|
out_tensor = exe.run(feed={
|
|
|
|
|
'anchor': embeddings_anchor,
|
|
|
|
|
'positive': embeddings_positive,
|
|
|
|
|
'labels_t': row_labels
|
|
|
|
|
},
|
|
|
|
|
anchor=anc, positive=pos, labels=lab, l2_reg=reg_lambda)
|
|
|
|
|
out_tensor = exe.run(feed={'anc': anc,
|
|
|
|
|
'pos': pos,
|
|
|
|
|
'lab': lab},
|
|
|
|
|
fetch_list=[npair_loss_op.name])
|
|
|
|
|
|
|
|
|
|
self.__assert_close(
|
|
|
|
|
out_tensor,
|
|
|
|
|
out_loss,
|
|
|
|
|
"inference output are different at " + str(place) + ", " +
|
|
|
|
|
str(np.dtype(dtype)) + str(np.array(out_tensor)) + str(out_loss),
|
|
|
|
|
str(np.dtype('float32')) + str(np.array(out_tensor)) +
|
|
|
|
|
str(out_loss),
|
|
|
|
|
atol=1e-3)
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
places = [core.CPUPlace()]
|
|
|
|
|
if core.is_compiled_with_cuda() and core.op_support_gpu("npair_loss"):
|
|
|
|
|
places.append(core.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
for place in places:
|
|
|
|
|
self.check_with_place(place, self.dtype, [18, 6, 3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|