|
|
|
@ -227,6 +227,7 @@ class Optimizer(object):
|
|
|
|
|
self.helper = LayerHelper(self.__class__.__name__)
|
|
|
|
|
self._create_accumulators(loss.block,
|
|
|
|
|
[p[0] for p in parameters_and_grads])
|
|
|
|
|
self._create_global_learning_rate()
|
|
|
|
|
|
|
|
|
|
optimize_ops = []
|
|
|
|
|
for param_and_grad in parameters_and_grads:
|
|
|
|
@ -268,6 +269,7 @@ class Optimizer(object):
|
|
|
|
|
param_and_grad = [table_param, table_grad]
|
|
|
|
|
with table_param.block.program._optimized_guard(param_and_grad), \
|
|
|
|
|
framework.name_scope("optimizer"):
|
|
|
|
|
self._create_global_learning_rate()
|
|
|
|
|
# create the optimize op
|
|
|
|
|
sgd_op = loss.block.append_op(
|
|
|
|
|
type='sgd',
|
|
|
|
@ -291,7 +293,6 @@ class Optimizer(object):
|
|
|
|
|
`create_optimization_pass()` into one.
|
|
|
|
|
"""
|
|
|
|
|
with program_guard(loss.block.program, startup_program):
|
|
|
|
|
self._create_global_learning_rate()
|
|
|
|
|
|
|
|
|
|
params_grads = append_backward(loss, parameter_list, no_grad_set,
|
|
|
|
|
[error_clip_callback])
|
|
|
|
|