@ -67,7 +67,8 @@ class Optimizer(object):
regularization = None ,
grad_clip = None ,
name = None ) :
self . _parameter_list = parameter_list
self . _parameter_list = list (
parameter_list ) if parameter_list is not None else None
self . _name = name
if framework . in_dygraph_mode ( ) :
if not isinstance ( learning_rate , float ) and \
@ -705,7 +706,7 @@ class Optimizer(object):
startup_program ( Program , optional ) : : ref : ` api_fluid_Program ` for
initializing parameters in ` ` parameter_list ` ` . The default value
is None , at this time : ref : ` api_fluid_default_startup_program ` will be used .
parameter_list ( list , optional ) : List of ` ` Variable ` ` or ` ` Variable . name ` ` to update
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` or ` ` Variable . name ` ` to update
to minimize ` ` loss ` ` . The default value is None , at this time all parameters
will be updated .
no_grad_set ( set , optional ) : Set of ` ` Variable ` ` or ` ` Variable . name ` ` that don ' t need
@ -882,7 +883,7 @@ class Optimizer(object):
startup_program ( Program , optional ) : : ref : ` api_fluid_Program ` for
initializing parameters in ` ` parameter_list ` ` . The default value
is None , at this time : ref : ` api_fluid_default_startup_program ` will be used .
parameter_list ( list , optional ) : List of ` ` Variable ` ` or ` ` Variable . name ` ` to update
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` or ` ` Variable . name ` ` to update
to minimize ` ` loss ` ` . The default value is None , at this time all parameters
will be updated .
no_grad_set ( set , optional ) : Set of ` ` Variable ` ` or ` ` Variable . name ` ` that don ' t need
@ -926,7 +927,7 @@ class SGDOptimizer(Optimizer):
Parameters :
learning_rate ( float | Variable ) : The learning rate used to update parameters . \
Can be a float value or a Variable with one float value as data element .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -1034,7 +1035,7 @@ class MomentumOptimizer(Optimizer):
learning_rate ( float | Variable ) : The learning rate used to update parameters . \
Can be a float value or a Variable with one float value as data element .
momentum ( float ) : Momentum factor
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
use_nesterov ( bool , optional ) : Enables Nesterov momentum , default is false .
@ -1182,7 +1183,7 @@ class DGCMomentumOptimizer(Optimizer):
sparsity ( list [ float ] ) : Get top important element from gradient tensor , the ratio is ( 1 - current sparsity ) . \
Default is [ 0.999 ] . For example , if the sparsity is [ 0.99 , 0.999 ] , \
the top [ 1 % , 0.1 % ] important element will be transmitted .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
use_nesterov ( bool ) : Enables Nesterov momentum . True means use Nesterov . Default is False .
@ -1580,7 +1581,7 @@ class LarsMomentumOptimizer(Optimizer):
momentum ( float ) : momentum factor
lars_coeff ( float ) : Defines how much we trust the layer to change its weights .
lars_weight_decay ( float ) : Weight decay coefficient for decaying using LARS .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -1699,7 +1700,7 @@ class AdagradOptimizer(Optimizer):
It can be a float value or a ` ` Variable ` ` with a float type .
epsilon ( float , optional ) : A small float value for numerical stability .
The default value is 1e-06 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -1824,7 +1825,7 @@ class AdamOptimizer(Optimizer):
The default value is 0.999 .
epsilon ( float , optional ) : A small float value for numerical stability .
The default value is 1e-08 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -2090,7 +2091,7 @@ class AdamaxOptimizer(Optimizer):
The default value is 0.999 .
epsilon ( float , optional ) : A small float value for numerical stability .
The default value is 1e-08 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -2265,7 +2266,7 @@ class DpsgdOptimizer(Optimizer):
clip ( float ) : clipping threshold
batch_size ( float ) : batch size .
sigma ( float ) : for gaussian noise .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
Notes :
@ -2348,7 +2349,7 @@ class DecayedAdagradOptimizer(Optimizer):
decay ( float , optional ) : The decay rate . The default value is 0.95 .
epsilon ( float , optional ) : A small float value for numerical stability .
The default value is 1e-06 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -2453,7 +2454,7 @@ class AdadeltaOptimizer(Optimizer):
learning_rate ( float | Variable ) : global learning rate .
epsilon ( float ) : a small float number for numeric stability . Default 1.0e-6 .
rho ( float ) : a floating point value indicating the decay rate . Default 0.95 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -2610,7 +2611,7 @@ class RMSPropOptimizer(Optimizer):
the gradient ; if False , by the uncentered second moment . Setting this to
True may help with training , but is slightly more expensive in terms of
computation and memory . Defaults to False .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -2784,7 +2785,7 @@ class FtrlOptimizer(Optimizer):
l1 ( float ) : L1 regularization strength , default is 0.0 .
l2 ( float ) : L2 regularization strength , default is 0.0 .
lr_power ( float ) : Learning Rate Power , default is - 0.5 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \
@ -2932,7 +2933,7 @@ class LambOptimizer(AdamOptimizer):
beta2 ( float , optional ) : The exponential decay rate for the 2 nd moment estimates .
Default 0.999 .
epsilon ( float , optional ) : A small float value for numerical stability . Default 1e-6 .
parameter_list ( list , optional ) : List of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
parameter_list ( Iterable , optional ) : Iterable of ` ` Variable ` ` names to update to minimize ` ` loss ` ` . \
This parameter is required in dygraph mode . \
The default value is None in static mode , at this time all parameters will be updated .
regularization ( WeightDecayRegularizer , optional ) : The strategy of regularization . There are two method : \