parent
00280baa85
commit
ff5570c126
File diff suppressed because it is too large
Load Diff
@ -1,148 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
enum MiningType { kNone = 0, kMaxNegative, kHardExample };
|
||||
|
||||
template <typename T>
|
||||
bool SortScoreDescend(const std::pair<float, T>& pair1,
|
||||
const std::pair<float, T>& pair2) {
|
||||
return pair1.first > pair2.first;
|
||||
}
|
||||
|
||||
inline bool IsEligibleMining(const MiningType mining_type, const int match_idx,
|
||||
const float match_dis,
|
||||
const float neg_dis_threshold) {
|
||||
if (mining_type == MiningType::kMaxNegative) {
|
||||
return match_idx == -1 && match_dis < neg_dis_threshold;
|
||||
} else if (mining_type == MiningType::kHardExample) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
MiningType GetMiningType(std::string str) {
|
||||
if (str == "max_negative") {
|
||||
return MiningType::kMaxNegative;
|
||||
} else if (str == "hard_example") {
|
||||
return MiningType::kHardExample;
|
||||
} else {
|
||||
return MiningType::kNone;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MineHardExamplesKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* in_cls_loss = ctx.Input<framework::Tensor>("ClsLoss");
|
||||
auto* in_loc_loss = ctx.Input<framework::Tensor>("LocLoss");
|
||||
auto* in_matched_indics = ctx.Input<framework::Tensor>("MatchIndics");
|
||||
auto* in_match_dis = ctx.Input<framework::Tensor>("MatchDis");
|
||||
float neg_pos_ratio = ctx.Attr<float>("neg_pos_ratio");
|
||||
T neg_dis_threshold = static_cast<T>(ctx.Attr<float>("neg_dis_threshold"));
|
||||
int sample_size = ctx.Attr<int>("sample_size");
|
||||
MiningType mining_type =
|
||||
GetMiningType(ctx.Attr<std::string>("mining_type"));
|
||||
|
||||
auto out_neg_indics = ctx.Output<framework::LoDTensor>("NegIndics");
|
||||
auto out_match_indics = ctx.Output<framework::Tensor>("UpdatedMatchIndics");
|
||||
|
||||
framework::Copy(*in_matched_indics, ctx.GetPlace(), out_match_indics);
|
||||
|
||||
int batch_size = in_matched_indics->dims()[0];
|
||||
int prior_num = in_matched_indics->dims()[1];
|
||||
|
||||
auto match_indices = framework::EigenMatrix<int>::From(*in_matched_indics);
|
||||
|
||||
auto match_indices_et =
|
||||
framework::EigenMatrix<int>::From(*out_match_indics);
|
||||
|
||||
auto match_dis = framework::EigenMatrix<float>::From(*in_match_dis);
|
||||
auto cls_loss = framework::EigenMatrix<float>::From(*in_cls_loss);
|
||||
auto loc_loss = framework::EigenMatrix<float>::From(*in_loc_loss);
|
||||
|
||||
std::vector<std::vector<int>> all_neg_indices;
|
||||
int all_neg_num = 0;
|
||||
for (int n = 0; n < batch_size; ++n) {
|
||||
std::vector<std::pair<float, size_t>> loss_idx;
|
||||
int neg_sel = 0;
|
||||
for (int m = 0; m < prior_num; ++m) {
|
||||
if (IsEligibleMining(mining_type, match_indices(n, m), match_dis(n, m),
|
||||
neg_dis_threshold)) {
|
||||
T loss = cls_loss(n, m);
|
||||
if (mining_type == MiningType::kHardExample) {
|
||||
loss = cls_loss(n, m) + loc_loss(n, m);
|
||||
}
|
||||
loss_idx.push_back(std::make_pair(loss, m));
|
||||
++neg_sel;
|
||||
}
|
||||
}
|
||||
if (mining_type == MiningType::kMaxNegative) {
|
||||
int num_pos = 0;
|
||||
for (int m = 0; m < prior_num; ++m) {
|
||||
if (match_indices(n, m) != -1) ++num_pos;
|
||||
}
|
||||
neg_sel = std::min(static_cast<int>(num_pos * neg_pos_ratio), neg_sel);
|
||||
} else if (mining_type == MiningType::kHardExample) {
|
||||
neg_sel = std::min(sample_size, neg_sel);
|
||||
}
|
||||
std::sort(loss_idx.begin(), loss_idx.end(), SortScoreDescend<int>);
|
||||
std::set<int> sel_indices;
|
||||
std::vector<int> neg_indices;
|
||||
for (int n = 0; n < neg_sel; ++n) {
|
||||
sel_indices.insert(loss_idx[n].second);
|
||||
}
|
||||
|
||||
for (int m = 0; m < prior_num; ++m) {
|
||||
if (match_indices(n, m) > -1) {
|
||||
if (mining_type == MiningType::kHardExample &&
|
||||
sel_indices.find(m) == sel_indices.end()) {
|
||||
match_indices_et(n, m) = -1;
|
||||
}
|
||||
} else {
|
||||
if (sel_indices.find(m) != sel_indices.end()) {
|
||||
neg_indices.push_back(m);
|
||||
}
|
||||
}
|
||||
}
|
||||
all_neg_indices.push_back(neg_indices);
|
||||
all_neg_num += neg_indices.size();
|
||||
}
|
||||
|
||||
framework::LoD out_neg_indics_lod;
|
||||
out_neg_indics_lod.resize(1);
|
||||
int neg_offset = 0;
|
||||
auto neg_data = out_neg_indics->mutable_data<int>(
|
||||
framework::make_ddim({all_neg_num, 1}), ctx.GetPlace());
|
||||
out_neg_indics_lod[0].push_back(neg_offset);
|
||||
for (auto neg_indices : all_neg_indices) {
|
||||
for (auto neg_idx : neg_indices) {
|
||||
neg_data[neg_offset++] = neg_idx;
|
||||
}
|
||||
out_neg_indics_lod[0].push_back(neg_offset);
|
||||
}
|
||||
out_neg_indics->set_lod(out_neg_indics_lod);
|
||||
return;
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue