|
|
|
@ -31,16 +31,22 @@ public:
|
|
|
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
void calSelectedCols(const MatrixPtr scores,
|
|
|
|
|
const int* seqStartPos,
|
|
|
|
|
const int* subSeqStartPos);
|
|
|
|
|
void reorganizeSeqInfo(const ICpuGpuVectorPtr seqStartPos,
|
|
|
|
|
const ICpuGpuVectorPtr subSeqStartPos);
|
|
|
|
|
void calSelectedCols(const MatrixPtr selectedIndices,
|
|
|
|
|
const std::vector<std::vector<int>> inputSeqInfo);
|
|
|
|
|
void buildOutputSeqInfo();
|
|
|
|
|
|
|
|
|
|
std::vector<int> outSeqStartInfo_;
|
|
|
|
|
std::vector<int> outSubSeqStartInfo_;
|
|
|
|
|
|
|
|
|
|
MatrixPtr scoreOverInputSeq_;
|
|
|
|
|
// if the second input of this layer is on GPU memory, copy it to CPU memory.
|
|
|
|
|
MatrixPtr selIdsCpu_;
|
|
|
|
|
// reorganize sequenceStartPositions and subSequenceStartPositions altogether
|
|
|
|
|
// into a 2d vector to facilitate the sequence selection process.
|
|
|
|
|
std::vector<std::vector<int>> inputSeqInfo_;
|
|
|
|
|
|
|
|
|
|
// the final seleted row indices in a batch,
|
|
|
|
|
// rowIdx_ and selectedRows_ actually share a same memory.
|
|
|
|
|
IVectorPtr rowIndice_;
|
|
|
|
|
std::vector<int> selectedRows_;
|
|
|
|
@ -57,12 +63,47 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SubNestedSequenceLayer::calSelectedCols(const MatrixPtr selected_indices,
|
|
|
|
|
const int* seqStartPos,
|
|
|
|
|
const int* subSeqStartPos) {
|
|
|
|
|
void SubNestedSequenceLayer::reorganizeSeqInfo(
|
|
|
|
|
const ICpuGpuVectorPtr seqStartPos, const ICpuGpuVectorPtr subSeqStartPos) {
|
|
|
|
|
int* seqStarts = seqStartPos->getMutableData(false);
|
|
|
|
|
int* subSeqStarts = subSeqStartPos->getMutableData(false);
|
|
|
|
|
|
|
|
|
|
int seqNum = seqStartPos->getSize() - 1;
|
|
|
|
|
inputSeqInfo_.resize(seqNum, std::vector<int>());
|
|
|
|
|
int seqIdx = 0;
|
|
|
|
|
for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) {
|
|
|
|
|
inputSeqInfo_[seqIdx].push_back(subSeqStarts[i]);
|
|
|
|
|
if (subSeqStarts[i] == seqStarts[seqIdx + 1]) {
|
|
|
|
|
seqIdx++;
|
|
|
|
|
if (seqIdx == seqNum) return;
|
|
|
|
|
inputSeqInfo_[seqIdx].push_back(subSeqStarts[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SubNestedSequenceLayer::calSelectedCols(
|
|
|
|
|
const MatrixPtr selectedIndices,
|
|
|
|
|
const std::vector<std::vector<int>> inputSeqInfo) {
|
|
|
|
|
selectedRows_.clear();
|
|
|
|
|
outSubSeqStartInfo_.resize(1, 0);
|
|
|
|
|
outSeqStartInfo_.resize(1, 0);
|
|
|
|
|
|
|
|
|
|
size_t seqNum = selectedIndices->getHeight();
|
|
|
|
|
size_t beamSize = selectedIndices->getWidth();
|
|
|
|
|
for (size_t i = 0; i < seqNum; ++i) {
|
|
|
|
|
for (size_t j = 0; j < beamSize; ++j) {
|
|
|
|
|
if (selectedIndices->getElement(i, j) == -1.) break;
|
|
|
|
|
int selSubSeqIdx = selectedIndices->getElement(i, j);
|
|
|
|
|
CHECK_GT(inputSeqInfo_[i].size() - 1, selSubSeqIdx);
|
|
|
|
|
|
|
|
|
|
size_t subSeqLen =
|
|
|
|
|
inputSeqInfo_[i][selSubSeqIdx + 1] - inputSeqInfo_[i][selSubSeqIdx];
|
|
|
|
|
for (size_t k = 0; k < subSeqLen; ++k)
|
|
|
|
|
selectedRows_.push_back(inputSeqInfo_[i][selSubSeqIdx] + k);
|
|
|
|
|
outSubSeqStartInfo_.push_back(outSubSeqStartInfo_.back() + subSeqLen);
|
|
|
|
|
}
|
|
|
|
|
outSeqStartInfo_.push_back(outSubSeqStartInfo_.back());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SubNestedSequenceLayer::buildOutputSeqInfo() {
|
|
|
|
@ -83,17 +124,35 @@ void SubNestedSequenceLayer::forward(PassType passType) {
|
|
|
|
|
Layer::forward(passType);
|
|
|
|
|
|
|
|
|
|
const Argument& inputSeq = getInput(0);
|
|
|
|
|
const MatrixPtr selected_indices = getInputValue(1);
|
|
|
|
|
CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer "
|
|
|
|
|
<< "must be a nested sequence.";
|
|
|
|
|
CHECK_EQ(inputSeq.getNumSequences(), selected_indices->getHeight());
|
|
|
|
|
|
|
|
|
|
calSelectedCols(selected_indices,
|
|
|
|
|
inputSeq.sequenceStartPositions->getMutableData(false),
|
|
|
|
|
inputSeq.subSequenceStartPositions->getMutableData(false));
|
|
|
|
|
const MatrixPtr selectedIndices = getInputValue(1);
|
|
|
|
|
CHECK_EQ(inputSeq.getNumSequences(), selectedIndices->getHeight());
|
|
|
|
|
|
|
|
|
|
if (dynamic_cast<GpuMatrix*>(selectedIndices.get())) {
|
|
|
|
|
/*
|
|
|
|
|
* Currently, the second input for this layer generated by
|
|
|
|
|
* kmax_sequence_score_layer whose output is always stored on CPU,
|
|
|
|
|
* or a data_layer which canbe on GPU.
|
|
|
|
|
*
|
|
|
|
|
* If the second input is on GPU, copy it to CPU memory, because this
|
|
|
|
|
* input always uses very few memory, and operations related to it are
|
|
|
|
|
* all logic control, not computations.
|
|
|
|
|
*/
|
|
|
|
|
Matrix::resizeOrCreate(selIdsCpu_,
|
|
|
|
|
selectedIndices->getHeight(),
|
|
|
|
|
selectedIndices->getWidth(),
|
|
|
|
|
false /* trans */,
|
|
|
|
|
false /* useGpu */);
|
|
|
|
|
selIdsCpu_->copyFrom(*selectedIndices);
|
|
|
|
|
} else {
|
|
|
|
|
selIdsCpu_ = selectedIndices;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
reorganizeSeqInfo(inputSeq.sequenceStartPositions,
|
|
|
|
|
inputSeq.subSequenceStartPositions);
|
|
|
|
|
calSelectedCols(selIdsCpu_, inputSeqInfo_);
|
|
|
|
|
resetOutput(selectedRows_.size(), getSize());
|
|
|
|
|
buildOutputSeqInfo();
|
|
|
|
|
|
|
|
|
|
if (useGpu_) {
|
|
|
|
|
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
|
|
|
|
@ -103,6 +162,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
|
|
|
|
|
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
buildOutputSeqInfo();
|
|
|
|
|
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|