Add uncombined_weight_to_state_dict api (#25649)
* add uncombined_weight_to_state_dict APIrevert-24895-update_cub
parent
a43b0d155d
commit
ffcb6537c5
@ -0,0 +1,126 @@
|
||||
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import shutil
|
||||
import tempfile
|
||||
|
||||
from paddle import fluid
|
||||
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
|
||||
|
||||
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
|
||||
|
||||
|
||||
class LeNetDygraph(fluid.dygraph.Layer):
|
||||
def __init__(self, num_classes=10, classifier_activation='softmax'):
|
||||
super(LeNetDygraph, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.features = Sequential(
|
||||
Conv2D(
|
||||
1, 6, 3, stride=1, padding=1),
|
||||
ReLU(),
|
||||
Pool2D(2, 'max', 2),
|
||||
Conv2D(
|
||||
6, 16, 5, stride=1, padding=0),
|
||||
ReLU(),
|
||||
Pool2D(2, 'max', 2))
|
||||
|
||||
if num_classes > 0:
|
||||
self.fc = Sequential(
|
||||
Linear(400, 120),
|
||||
Linear(120, 84),
|
||||
Linear(
|
||||
84, 10, act=classifier_activation))
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self.features(inputs)
|
||||
|
||||
if self.num_classes > 0:
|
||||
x = fluid.layers.flatten(x, 1)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
class TestUncombinedWeight2StateDict(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.save_dir = tempfile.mkdtemp()
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
shutil.rmtree(cls.save_dir)
|
||||
|
||||
def test_infer(self):
|
||||
start_prog = fluid.Program()
|
||||
train_prog = fluid.Program()
|
||||
|
||||
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
|
||||
|
||||
with fluid.program_guard(train_prog, start_prog):
|
||||
with fluid.unique_name.guard():
|
||||
x = fluid.data(
|
||||
name='x', shape=[None, 1, 28, 28], dtype='float32')
|
||||
model = LeNetDygraph()
|
||||
output = model.forward(x)
|
||||
|
||||
excutor = fluid.Executor()
|
||||
excutor.run(start_prog)
|
||||
|
||||
test_prog = train_prog.clone(for_test=True)
|
||||
|
||||
fluid.io.save_params(excutor, self.save_dir, test_prog)
|
||||
|
||||
rand_x = np.random.rand(1, 1, 28, 28).astype('float32')
|
||||
out = excutor.run(program=test_prog,
|
||||
feed={'x': rand_x},
|
||||
fetch_list=[output.name],
|
||||
return_numpy=True)
|
||||
|
||||
state_dict = uncombined_weight_to_state_dict(self.save_dir)
|
||||
|
||||
key2key_dict = {
|
||||
'features.0.weight': 'conv2d_0.w_0',
|
||||
'features.0.bias': 'conv2d_0.b_0',
|
||||
'features.3.weight': 'conv2d_1.w_0',
|
||||
'features.3.bias': 'conv2d_1.b_0',
|
||||
'fc.0.weight': 'linear_0.w_0',
|
||||
'fc.0.bias': 'linear_0.b_0',
|
||||
'fc.1.weight': 'linear_1.w_0',
|
||||
'fc.1.bias': 'linear_1.b_0',
|
||||
'fc.2.weight': 'linear_2.w_0',
|
||||
'fc.2.bias': 'linear_2.b_0'
|
||||
}
|
||||
|
||||
fluid.enable_imperative()
|
||||
dygraph_model = LeNetDygraph()
|
||||
|
||||
converted_state_dict = dygraph_model.state_dict()
|
||||
for k1, k2 in key2key_dict.items():
|
||||
converted_state_dict[k1] = state_dict[k2]
|
||||
|
||||
dygraph_model.set_dict(converted_state_dict)
|
||||
|
||||
dygraph_model.eval()
|
||||
dy_out = dygraph_model(fluid.dygraph.to_variable(rand_x))
|
||||
|
||||
np.testing.assert_allclose(dy_out.numpy(), out[0], atol=1e-5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue