* test=develop
Add input type and dtype check for sign_op.
* test=develop
Fix the api text format in sign op.
* test=develop
Fix the api examples in sign op add update the api.spec.
* Delete PadFuntion, include padding.h instead. test=develop
* move function(IsSymmetricPadding) from conv_cudnn_op.cu/conv_transpose_cudnn_op.cu to padding.h, test=develop
* Update crf_decoding api & example
test=develop
* Update api spec
test=develop
* Fix linear chain crf api
test=develop
* Avoid sharing data pointer with input
test=develop
* Simplify the logic in linear_chain_crf_decoding
* Add unittest for crf_decoding when label & path both are set
test=develop
* Update API spec
test=develop
* Add unittest for layers && correct infer_shape in chunk_eval
test=develop
* test=develop, fix docker with paddle nccl problem
* test=develop, Add Variable api and refine dygraph related API
* test=develop, Add Variable api and refine dygraph related API
* test=develop, refine test for new api and error info
* test=develop, refine error info and test_layers
* test=develop, add API.spec
* test=devleop, fix to_string python2 and python3 compat error and refien doc
* test=devleop, add API spec
* test=devleop, update API spec
* test=devleop, update API spec
* test=develop, invoke ci
* test=develop, fix example code
* test=develop, update API spec
* test=develop, fix auto_prune_error_on_leaf
* test=develop, fix auto prune error on loss stop_gradient
* test=develop, remove useless error check
* test=develop, add more ut for sorted gradient
* fix the error message for reduce_mean and reduce_sum op test=develop
* fix typo test=develop
* fix according review advice test=develop
* fix the test test=develop
* fix test=develop
* fix the constant error message test=develop
* fix typo test=develop
* fix typo test=develop
* fix code style test=develop
* fix comment and bugs test=develop
* fix the bug test=develop
* fix and add unittest test=develop
* fix the typo test=develop
* add support for the fill_constant op test=develop
* add test for ci coverage test=develop
1.support asymmetric padding;
2.support padding algorithm:"SAME" and "VALID";
3.support channel_last: data_format NHWC and NDHWC;
4.change doc of python API and c++;
test=develop, test=document_preview
* How to write custom op needs to follow framework OP spec.
* Package fluid_framework.so and headers into whl.
* Add paddle.sysconfig.get_include() and paddle.sysconfig.get_lib() to get include dir and lib dir.
* Export some C-APIs to merge OpInfo between core.so and custom_op.so.
* Add unit testing.
* Update API.spec.
* test=develop, argument shape support tensor and tensor in list
* test=develop,Increasing the coverage of CI tests
* test=develop, modify the document and update API.spec
* test=develop, modify the doc and update API.spec
* test=develop, modify the doc and update API.spec
* test=develop, modify the interface of UniformInitializer
* test=develop, modify the interface of XavierInitializer and MSRAInitializer
* test=develop, modify based on review's comments
* test=develop, modify based on review's comments
* test=develop, modify based on review's comments
* fix pool2d pool3d:
1. support asymmetric padding;
2. support padding algorithm:"SAME" and "VALID";
3. support channel_last: data_format NHWC and NDHWC;
4. support inferring shape when input with negative dims in compile time;
5. change doc of python API and c++;
6. fix bug in cuda kernel when Attr(adaptive) is true.
test=develop,test=document_preview
* fix 'tensors' to 'Tensors'. test=develop,test=document_preview
* add test for converage ValueError.test=develop,test=document_preview
* resolve conflict in test_pool2d. test=develop
* Follow Wangzhen's comment in PR 18970, test=develop
* Review comments, test=develop
* Leave fake quantization around mul
test=develop
* Replace Fake with Real Quantized Mul
test=develop
* Fix bug in quantize placement pass
Nodes in the graph now have checked type instead of node name when they are to be marked for quantization test=develop
* test=develop, fix docker with paddle nccl problem
* test=develop, Add Variable api and refine dygraph related API
* test=develop, Add Variable api and refine dygraph related API
* test=develop, refine test for new api and error info
* test=develop, refine error info and test_layers
* test=develop, add API.spec
* test=devleop, fix to_string python2 and python3 compat error and refien doc
* test=devleop, add API spec
* test=devleop, update API spec
* test=devleop, update API spec
* test=develop, invoke ci
* test=develop, fix example code
* test=develop, update API spec
* test=develop, add compat test and fix inplace campat dict error
* Fix conv2d+dequantize squash for residual fusion
test=develop
* Correct int8 input
test=develop
* Add if exclude or include padding in pool2d mkldnn
test=develop
The new "fluid.data" changes old "fluid.layers.data":
1. Add shape and dtype check.
2. Remove "append_batch_size" parameter. We won't offer this in the new data layer because other deep learning platforms don't have this kind of data layer pre-processing. It may confuse users.
3. Remove "stop gradient" parameter because the data layer doesn't do back-propagation
TODO:
Now data layer feeded by executor is checked, will we want to check the feed data of readers in the future?
* add kernel for fill_op, test=develop
* modify PADDLE_ENFORCE to PADDLE_ENFORCE_EQ, test=develop
* add op test for fill_op, test=develop
* REGISTER COP CUDA KERNEL, test=develop
* update test_fill_op.py, test=develop
* change FillConstantOpVarTypeInference to FillOpVarTypeInference, test=develop
* fix op test, test=develop
* add head file, test=develop
* add support of matmul with multiple head even different width and height
Original matmul with multiple head supports only the mat_a.width == mat_b.height,
in that case, mat_b will be horizontally split. In this patch, we extend the
support when mat_a.width != mat_b.height but mat_a.width/head_number == mat_b.height,
in this case, mab_b will be vertically split.
One example is A is [3, 8], B is [2, 16], head_number is 4. In this
case, A will be split as [3, 2], B will be (vertically) split as
[2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
test=develop
* add support of matmul with multiple head even different width and height
Original matmul with multiple head supports only the mat_a.width == mat_b.height,
in that case, mat_b will be horizontally split. In this patch, we extend the
support when mat_a.width != mat_b.height but mat_a.width/head_number == mat_b.height,
in this case, mab_b will be vertically split.
One example is A is [3, 8], B is [2, 16], head_number is 4. In this
case, A will be split as [3, 2], B will be (vertically) split as
[2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
test=develop
* refactor the code of matmul with multiple head even different width and height
test=develop
* Add support for new QAT models
test=develop
Co-Authored-By: Michał Gallus <michal.gallus@intel.com>
Co-Authored-By: Wojciech Uss <wojciech.uss@intel.com>
* fixed fps results
test=develop
* fix top5 accuracy drop problem
* updated for new QAT models
* skip quantizing average pooling - dirty but working
* add missing pass
* added missing conv+brelu fuse pass
* removed a call to non-existent pass
test=develop
* renamed pass
test=develop
* Adjust finding pooling scale to newest QAT models
* Remove unnecessary code from quantization_mkldnn_pass
* Copy Pooling input scale to output scale in QAT
* Refactor & remove unused code in QAT
* Incorporate fp32 FC into QAT
test=develop
* Enable graph drawing with debug flag
test=develop
* Add tests for QATv2
* Fix paths for QATv2 models
test=develop
* Add option to save transformed int8 qat model
test=develop
* Remove redundant lines from qat mkldnn pass
test=develop
* Delegate disablement of avg pooling to qat
test=develop
* fix CI bug, test=develop
* Follow Wangzhen's Review, test=develop
* Update API.spec
test=develop
* Name False in (is_unsigned, TensorScale) tuple
test=develop