You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/data_set.cc

933 lines
31 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/framework/data_set.h"
#include <algorithm>
#include <random>
#include <unordered_map>
#include <unordered_set>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/io/fs.h"
#include "paddle/fluid/platform/timer.h"
#include "xxhash.h" // NOLINT
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif
namespace paddle {
namespace framework {
// constructor
template <typename T>
DatasetImpl<T>::DatasetImpl() {
VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
thread_num_ = 1;
trainer_num_ = 1;
channel_num_ = 1;
file_idx_ = 0;
cur_channel_ = 0;
fleet_send_batch_size_ = 1024;
fleet_send_sleep_seconds_ = 0;
merge_by_insid_ = false;
merge_size_ = 2;
parse_ins_id_ = false;
parse_content_ = false;
preload_thread_num_ = 0;
global_index_ = 0;
}
// set filelist, file_idx_ will reset to zero.
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
VLOG(3) << "filelist size: " << filelist.size();
filelist_ = filelist;
file_idx_ = 0;
}
// set expect thread num. actually it may change
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
VLOG(3) << "SetThreadNum thread_num=" << thread_num;
thread_num_ = thread_num;
}
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
template <typename T>
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
trainer_num_ = trainer_num;
}
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
fleet_send_batch_size_ = size;
}
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
const std::string& fs_ugi) {
fs_name_ = fs_name;
fs_ugi_ = fs_ugi;
std::string cmd = std::string("hadoop fs");
cmd += " -D fs.default.name=" + fs_name;
cmd += " -D hadoop.job.ugi=" + fs_ugi;
paddle::framework::hdfs_set_command(cmd);
}
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
&data_feed_desc_);
}
template <typename T>
void DatasetImpl<T>::SetChannelNum(int channel_num) {
channel_num_ = channel_num;
}
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
parse_ins_id_ = parse_ins_id;
}
template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
parse_content_ = parse_content;
}
template <typename T>
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
merge_by_insid_ = true;
parse_ins_id_ = true;
merge_size_ = merge_size;
}
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
slots_shuffle_fea_eval_ = fea_eval;
slots_shuffle_rclist_.ReSize(record_candidate_size);
VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
<< " with record candidate size: " << record_candidate_size;
}
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
std::vector<paddle::framework::DataFeed*> ret;
ret.reserve(readers_.size());
for (auto i : readers_) {
ret.push_back(i.get());
}
return ret;
}
template <typename T>
void DatasetImpl<T>::CreateChannel() {
if (input_channel_ == nullptr) {
input_channel_ = paddle::framework::MakeChannel<T>();
}
if (multi_output_channel_.size() == 0) {
multi_output_channel_.reserve(channel_num_);
for (int i = 0; i < channel_num_; ++i) {
multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
}
}
if (multi_consume_channel_.size() == 0) {
multi_consume_channel_.reserve(channel_num_);
for (int i = 0; i < channel_num_; ++i) {
multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
}
}
}
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
auto fleet_ptr = FleetWrapper::GetInstance();
VLOG(3) << "RegisterClientToClientMsgHandler";
fleet_ptr->RegisterClientToClientMsgHandler(
0, [this](int msg_type, int client_id, const std::string& msg) -> int {
return this->ReceiveFromClient(msg_type, client_id, msg);
});
VLOG(3) << "RegisterClientToClientMsgHandler done";
}
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
platform::Timer timeline;
timeline.Start();
std::vector<std::thread> load_threads;
for (int64_t i = 0; i < thread_num_; ++i) {
load_threads.push_back(std::thread(
&paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
}
for (std::thread& t : load_threads) {
t.join();
}
input_channel_->Close();
int64_t in_chan_size = input_channel_->Size();
input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
timeline.Pause();
VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
<< ", memory data size=" << input_channel_->Size()
<< ", cost time=" << timeline.ElapsedSec() << " seconds";
}
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
if (preload_thread_num_ != 0) {
CHECK(preload_thread_num_ == preload_readers_.size());
preload_threads_.clear();
for (int64_t i = 0; i < preload_thread_num_; ++i) {
preload_threads_.push_back(
std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
preload_readers_[i].get()));
}
} else {
CHECK(thread_num_ == readers_.size());
preload_threads_.clear();
for (int64_t i = 0; i < thread_num_; ++i) {
preload_threads_.push_back(std::thread(
&paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
}
}
VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}
template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
for (std::thread& t : preload_threads_) {
t.join();
}
input_channel_->Close();
int64_t in_chan_size = input_channel_->Size();
input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
if (input_channel_) {
input_channel_->Clear();
input_channel_ = nullptr;
}
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
if (!multi_output_channel_[i]) {
continue;
}
multi_output_channel_[i]->Clear();
multi_output_channel_[i] = nullptr;
}
std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
if (!multi_consume_channel_[i]) {
continue;
}
multi_consume_channel_[i]->Clear();
multi_consume_channel_[i] = nullptr;
}
std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}
// do local shuffle
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
platform::Timer timeline;
timeline.Start();
if (!input_channel_ || input_channel_->Size() == 0) {
VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
return;
}
auto fleet_ptr = FleetWrapper::GetInstance();
input_channel_->Close();
std::vector<T> data;
input_channel_->ReadAll(data);
std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
input_channel_->Open();
input_channel_->Write(std::move(data));
data.clear();
data.shrink_to_fit();
input_channel_->Close();
timeline.Pause();
VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
<< timeline.ElapsedSec() << " seconds";
}
template <typename T>
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
platform::Timer timeline;
timeline.Start();
auto fleet_ptr = FleetWrapper::GetInstance();
if (!input_channel_ || input_channel_->Size() == 0) {
VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
return;
}
// local shuffle
input_channel_->Close();
std::vector<T> data;
input_channel_->ReadAll(data);
std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
input_channel_->Open();
input_channel_->Write(std::move(data));
data.clear();
data.shrink_to_fit();
input_channel_->Close();
input_channel_->SetBlockSize(fleet_send_batch_size_);
VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
<< input_channel_->Size();
auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
if (!this->merge_by_insid_) {
return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
} else {
return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
this->trainer_num_;
}
};
auto global_shuffle_func = [this, get_client_id]() {
auto fleet_ptr = FleetWrapper::GetInstance();
std::vector<T> data;
while (this->input_channel_->Read(data)) {
std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
for (auto& t : data) {
auto client_id = get_client_id(t);
ars[client_id] << t;
}
std::vector<std::future<int32_t>> total_status;
std::vector<int> send_index(this->trainer_num_);
for (int i = 0; i < this->trainer_num_; ++i) {
send_index[i] = i;
}
std::shuffle(send_index.begin(), send_index.end(),
fleet_ptr->LocalRandomEngine());
for (auto index = 0u; index < this->trainer_num_; ++index) {
int i = send_index[index];
if (ars[i].Length() == 0) {
continue;
}
std::string msg(ars[i].Buffer(), ars[i].Length());
auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
total_status.push_back(std::move(ret));
}
for (auto& t : total_status) {
t.wait();
}
ars.clear();
ars.shrink_to_fit();
data.clear();
data.shrink_to_fit();
// currently we find bottleneck is server not able to handle large data
// in time, so we can remove this sleep and set fleet_send_batch_size to
// 1024, and set server thread to 24.
if (fleet_send_sleep_seconds_ != 0) {
sleep(this->fleet_send_sleep_seconds_);
}
}
};
std::vector<std::thread> global_shuffle_threads;
if (thread_num == -1) {
thread_num = thread_num_;
}
VLOG(3) << "start global shuffle threads, num = " << thread_num;
for (int i = 0; i < thread_num; ++i) {
global_shuffle_threads.push_back(std::thread(global_shuffle_func));
}
for (std::thread& t : global_shuffle_threads) {
t.join();
}
global_shuffle_threads.clear();
global_shuffle_threads.shrink_to_fit();
input_channel_->Clear();
timeline.Pause();
VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
<< timeline.ElapsedSec() << " seconds";
}
template <typename T>
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num) {
if (channel_num_ == channel_num) {
VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
<< channel_num_ << ", channel_num_=channel_num, no need to adjust";
return;
}
VLOG(3) << "adjust channel num from " << channel_num_ << " to "
<< channel_num;
channel_num_ = channel_num;
std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
// find out which channel (output or consume) has data
int cur_channel = 0;
uint64_t output_channels_data_size = 0;
uint64_t consume_channels_data_size = 0;
CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
for (int i = 0; i < multi_output_channel_.size(); ++i) {
output_channels_data_size += multi_output_channel_[i]->Size();
consume_channels_data_size += multi_consume_channel_[i]->Size();
}
if (output_channels_data_size != 0) {
CHECK(consume_channels_data_size == 0); // NOLINT
cur_channel = 0;
} else {
CHECK(output_channels_data_size == 0); // NOLINT
cur_channel = 1;
}
if (cur_channel == 0) {
origin_channels = &multi_output_channel_;
other_channels = &multi_consume_channel_;
} else {
origin_channels = &multi_consume_channel_;
other_channels = &multi_output_channel_;
}
CHECK(origin_channels != nullptr); // NOLINT
CHECK(other_channels != nullptr); // NOLINT
paddle::framework::Channel<T> total_data_channel =
paddle::framework::MakeChannel<T>();
std::vector<paddle::framework::Channel<T>> new_channels;
std::vector<paddle::framework::Channel<T>> new_other_channels;
std::vector<T> local_vec;
for (int i = 0; i < origin_channels->size(); ++i) {
local_vec.clear();
(*origin_channels)[i]->Close();
(*origin_channels)[i]->ReadAll(local_vec);
total_data_channel->Write(std::move(local_vec));
}
total_data_channel->Close();
total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
1);
for (int i = 0; i < channel_num; ++i) {
local_vec.clear();
total_data_channel->Read(local_vec);
new_other_channels.push_back(paddle::framework::MakeChannel<T>());
new_channels.push_back(paddle::framework::MakeChannel<T>());
new_channels[i]->Write(std::move(local_vec));
}
total_data_channel->Clear();
origin_channels->clear();
other_channels->clear();
*origin_channels = new_channels;
*other_channels = new_other_channels;
new_channels.clear();
new_other_channels.clear();
std::vector<paddle::framework::Channel<T>>().swap(new_channels);
std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
local_vec.clear();
std::vector<T>().swap(local_vec);
VLOG(3) << "adjust channel num done";
}
template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
if (thread_num_ == thread_num) {
VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
<< thread_num_ << ", thread_num_=thread_num, no need to adjust";
return;
}
VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
thread_num_ = thread_num;
std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
CreateReaders();
VLOG(3) << "adjust readers num done";
}
template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
fleet_send_sleep_seconds_ = seconds;
}
template <typename T>
void DatasetImpl<T>::CreateReaders() {
VLOG(3) << "Calling CreateReaders()";
VLOG(3) << "thread num in Dataset: " << thread_num_;
VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
VLOG(3) << "channel num in Dataset: " << channel_num_;
CHECK(thread_num_ > 0) << "thread num should > 0";
CHECK(channel_num_ > 0) << "channel num should > 0";
CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
VLOG(3) << "readers size: " << readers_.size();
if (readers_.size() != 0) {
VLOG(3) << "readers_.size() = " << readers_.size()
<< ", will not create again";
return;
}
VLOG(3) << "data feed class name: " << data_feed_desc_.name();
int channel_idx = 0;
for (int i = 0; i < thread_num_; ++i) {
readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
readers_[i]->Init(data_feed_desc_);
readers_[i]->SetThreadId(i);
readers_[i]->SetThreadNum(thread_num_);
readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
readers_[i]->SetFileListIndex(&file_idx_);
readers_[i]->SetFileList(filelist_);
readers_[i]->SetParseInsId(parse_ins_id_);
readers_[i]->SetParseContent(parse_content_);
if (input_channel_ != nullptr) {
readers_[i]->SetInputChannel(input_channel_.get());
}
if (cur_channel_ == 0 && channel_idx < multi_output_channel_.size()) {
readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
} else if (channel_idx < multi_output_channel_.size()) {
readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
}
++channel_idx;
if (channel_idx >= channel_num_) {
channel_idx = 0;
}
}
VLOG(3) << "readers size: " << readers_.size();
}
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
VLOG(3) << "Calling DestroyReaders()";
VLOG(3) << "readers size1: " << readers_.size();
std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
VLOG(3) << "readers size: " << readers_.size();
file_idx_ = 0;
cur_channel_ = 1 - cur_channel_;
}
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
preload_thread_num_ = thread_num;
}
template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
VLOG(3) << "Begin CreatePreLoadReaders";
if (preload_thread_num_ == 0) {
preload_thread_num_ = thread_num_;
}
CHECK(preload_thread_num_ > 0) << "thread num should > 0";
CHECK(input_channel_ != nullptr);
preload_readers_.clear();
for (int i = 0; i < preload_thread_num_; ++i) {
preload_readers_.push_back(
DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
preload_readers_[i]->Init(data_feed_desc_);
preload_readers_[i]->SetThreadId(i);
preload_readers_[i]->SetThreadNum(preload_thread_num_);
preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
preload_readers_[i]->SetFileListIndex(&file_idx_);
preload_readers_[i]->SetFileList(filelist_);
preload_readers_[i]->SetParseInsId(parse_ins_id_);
preload_readers_[i]->SetParseContent(parse_content_);
preload_readers_[i]->SetInputChannel(input_channel_.get());
preload_readers_[i]->SetOutputChannel(nullptr);
preload_readers_[i]->SetConsumeChannel(nullptr);
}
VLOG(3) << "End CreatePreLoadReaders";
}
template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
VLOG(3) << "Begin DestroyPreLoadReaders";
preload_readers_.clear();
std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
preload_readers_);
file_idx_ = 0;
VLOG(3) << "End DestroyPreLoadReaders";
}
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
return input_channel_->Size();
}
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
int64_t sum = 0;
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
}
return sum;
}
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
const std::string& msg) {
#ifdef _LINUX
VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
<< ", client_id=" << client_id << ", msg length=" << msg.length();
if (msg.length() == 0) {
return 0;
}
paddle::framework::BinaryArchive ar;
ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
if (ar.Cursor() == ar.Finish()) {
return 0;
}
std::vector<T> data;
while (ar.Cursor() < ar.Finish()) {
data.push_back(ar.Get<T>());
}
CHECK(ar.Cursor() == ar.Finish());
auto fleet_ptr = FleetWrapper::GetInstance();
// not use random because it doesn't perform well here.
// to make sure each channel get data equally, we just put data to
// channel one by one.
// int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
int64_t index = 0;
{
std::unique_lock<std::mutex> lk(global_index_mutex_);
index = global_index_++;
}
index = index % channel_num_;
VLOG(3) << "ramdom index=" << index;
multi_output_channel_[index]->Write(std::move(data));
data.clear();
data.shrink_to_fit();
#endif
return 0;
}
// explicit instantiation
template class DatasetImpl<Record>;
void MultiSlotDataset::MergeByInsId() {
VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
if (!merge_by_insid_) {
VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
return;
}
auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
std::vector<std::string> use_slots;
for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
const auto& slot = multi_slot_desc.slots(i);
if (slot.is_used()) {
use_slots.push_back(slot.name());
}
}
CHECK(multi_output_channel_.size() != 0); // NOLINT
auto channel_data = paddle::framework::MakeChannel<Record>();
VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
std::vector<Record> vec_data;
multi_output_channel_[i]->Close();
multi_output_channel_[i]->ReadAll(vec_data);
channel_data->Write(std::move(vec_data));
vec_data.clear();
vec_data.shrink_to_fit();
multi_output_channel_[i]->Clear();
}
channel_data->Close();
std::vector<Record> recs;
recs.reserve(channel_data->Size());
channel_data->ReadAll(recs);
channel_data->Clear();
std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
return a.ins_id_ < b.ins_id_;
});
std::vector<Record> results;
uint64_t drop_ins_num = 0;
std::unordered_set<uint16_t> all_int64;
std::unordered_set<uint16_t> all_float;
std::unordered_set<uint16_t> local_uint64;
std::unordered_set<uint16_t> local_float;
VLOG(3) << "recs.size() " << recs.size();
for (size_t i = 0; i < recs.size();) {
size_t j = i + 1;
while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
j++;
}
if (merge_size_ > 0 && j - i != merge_size_) {
drop_ins_num += j - i;
LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
<< ", because merge_size=" << merge_size_;
i = j;
continue;
}
all_int64.clear();
all_float.clear();
bool has_conflict_slot = false;
uint16_t conflict_slot = 0;
Record rec;
rec.ins_id_ = recs[i].ins_id_;
rec.content_ = recs[i].content_;
for (size_t k = i; k < j; k++) {
local_uint64.clear();
local_float.clear();
for (auto& feature : recs[k].uint64_feasigns_) {
uint16_t slot = feature.slot();
if (all_int64.find(slot) != all_int64.end()) {
has_conflict_slot = true;
conflict_slot = slot;
break;
}
local_uint64.insert(slot);
rec.uint64_feasigns_.push_back(std::move(feature));
}
if (has_conflict_slot) {
break;
}
all_int64.insert(local_uint64.begin(), local_uint64.end());
for (auto& feature : recs[k].float_feasigns_) {
uint16_t slot = feature.slot();
if (all_float.find(slot) != all_float.end()) {
has_conflict_slot = true;
conflict_slot = slot;
break;
}
local_float.insert(slot);
rec.float_feasigns_.push_back(std::move(feature));
}
if (has_conflict_slot) {
break;
}
all_float.insert(local_float.begin(), local_float.end());
}
if (has_conflict_slot) {
LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
<< ", because conflict_slot=" << use_slots[conflict_slot];
drop_ins_num += j - i;
} else {
results.push_back(std::move(rec));
}
i = j;
}
std::vector<Record>().swap(recs);
VLOG(3) << "results size " << results.size();
LOG(WARNING) << "total drop ins num: " << drop_ins_num;
results.shrink_to_fit();
auto fleet_ptr = FleetWrapper::GetInstance();
std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
channel_data->Open();
channel_data->Write(std::move(results));
channel_data->Close();
results.clear();
results.shrink_to_fit();
VLOG(3) << "channel data size " << channel_data->Size();
channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
VLOG(3) << "channel data block size " << channel_data->BlockSize();
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
std::vector<Record> vec_data;
channel_data->Read(vec_data);
multi_output_channel_[i]->Open();
multi_output_channel_[i]->Write(std::move(vec_data));
vec_data.clear();
vec_data.shrink_to_fit();
}
CHECK(channel_data->Size() == 0); // NOLINT
channel_data->Clear();
VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}
void MultiSlotDataset::GetRandomData(const std::set<uint16_t>& slots_to_replace,
std::vector<Record>* result) {
int debug_erase_cnt = 0;
int debug_push_cnt = 0;
auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
slots_shuffle_rclist_.ReInit();
for (const auto& rec : slots_shuffle_original_data_) {
RecordCandidate rand_rec;
Record new_rec = rec;
slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
for (auto it = new_rec.uint64_feasigns_.begin();
it != new_rec.uint64_feasigns_.end();) {
if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
it = new_rec.uint64_feasigns_.erase(it);
debug_erase_cnt += 1;
} else {
++it;
}
}
for (auto slot : slots_to_replace) {
auto range = rand_rec.feas.equal_range(slot);
for (auto it = range.first; it != range.second; ++it) {
new_rec.uint64_feasigns_.push_back({it->second, it->first});
debug_push_cnt += 1;
}
}
result->push_back(std::move(new_rec));
}
VLOG(2) << "erase feasign num: " << debug_erase_cnt
<< " repush feasign num: " << debug_push_cnt;
}
// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
const std::set<std::string>& slots_to_replace) {
int out_channel_size = 0;
if (cur_channel_ == 0) {
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
out_channel_size += multi_output_channel_[i]->Size();
}
} else {
for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
out_channel_size += multi_consume_channel_[i]->Size();
}
}
VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
<< input_channel_->Size()
<< " output channel size: " << out_channel_size;
if (!slots_shuffle_fea_eval_) {
VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end,"
"fea eval mode off, need to set on for slots shuffle";
return;
}
if ((!input_channel_ || input_channel_->Size() == 0) &&
slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
return;
}
platform::Timer timeline;
timeline.Start();
auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
std::set<uint16_t> index_slots;
for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
std::string cur_slot = multi_slot_desc.slots(i).name();
if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
index_slots.insert(i);
}
}
if (slots_shuffle_original_data_.size() == 0) {
// before first slots shuffle, instances could be in
// input_channel, oupput_channel or consume_channel
if (input_channel_ && input_channel_->Size() != 0) {
slots_shuffle_original_data_.reserve(input_channel_->Size());
input_channel_->Close();
input_channel_->ReadAll(slots_shuffle_original_data_);
} else {
CHECK(out_channel_size > 0); // NOLINT
if (cur_channel_ == 0) {
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
std::vector<Record> vec_data;
multi_output_channel_[i]->Close();
multi_output_channel_[i]->ReadAll(vec_data);
slots_shuffle_original_data_.reserve(
slots_shuffle_original_data_.size() + vec_data.size());
slots_shuffle_original_data_.insert(
slots_shuffle_original_data_.end(),
std::make_move_iterator(vec_data.begin()),
std::make_move_iterator(vec_data.end()));
vec_data.clear();
vec_data.shrink_to_fit();
multi_output_channel_[i]->Clear();
}
} else {
for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
std::vector<Record> vec_data;
multi_consume_channel_[i]->Close();
multi_consume_channel_[i]->ReadAll(vec_data);
slots_shuffle_original_data_.reserve(
slots_shuffle_original_data_.size() + vec_data.size());
slots_shuffle_original_data_.insert(
slots_shuffle_original_data_.end(),
std::make_move_iterator(vec_data.begin()),
std::make_move_iterator(vec_data.end()));
vec_data.clear();
vec_data.shrink_to_fit();
multi_consume_channel_[i]->Clear();
}
}
}
} else {
// if already have original data for slots shuffle, clear channel
input_channel_->Clear();
if (cur_channel_ == 0) {
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
if (!multi_output_channel_[i]) {
continue;
}
multi_output_channel_[i]->Clear();
}
} else {
for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
if (!multi_consume_channel_[i]) {
continue;
}
multi_consume_channel_[i]->Clear();
}
}
}
int end_size = 0;
if (cur_channel_ == 0) {
for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
if (!multi_output_channel_[i]) {
continue;
}
end_size += multi_output_channel_[i]->Size();
}
} else {
for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
if (!multi_consume_channel_[i]) {
continue;
}
end_size += multi_consume_channel_[i]->Size();
}
}
CHECK(input_channel_->Size() == 0)
<< "input channel should be empty before slots shuffle";
std::vector<Record> random_data;
random_data.clear();
// get slots shuffled random_data
GetRandomData(index_slots, &random_data);
input_channel_->Open();
input_channel_->Write(std::move(random_data));
random_data.clear();
random_data.shrink_to_fit();
input_channel_->Close();
timeline.Pause();
VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
<< ", memory data size for slots shuffle=" << input_channel_->Size()
<< ", cost time=" << timeline.ElapsedSec() << " seconds";
}
} // end namespace framework
} // end namespace paddle