You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
571 lines
23 KiB
571 lines
23 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
|
|
# TODO: define loss functions of neural network
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from ...fluid.framework import core, in_dygraph_mode
|
|
from ...fluid.layers.nn import _elementwise_op_in_dygraph
|
|
from ...fluid.layers import bpr_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import center_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import cross_entropy #DEFINE_ALIAS
|
|
from ...fluid.layers import dice_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import iou_similarity #DEFINE_ALIAS
|
|
from ...fluid.layers import log_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import npair_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import rank_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import reshape
|
|
from ...fluid.layers import sigmoid_cross_entropy_with_logits #DEFINE_ALIAS
|
|
from ...fluid.layers import sigmoid_focal_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import smooth_l1 #DEFINE_ALIAS
|
|
from ...fluid.layers import softmax_with_cross_entropy #DEFINE_ALIAS
|
|
from ...fluid.layers import square_error_cost #DEFINE_ALIAS
|
|
from ...fluid.layers import ssd_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import teacher_student_sigmoid_loss #DEFINE_ALIAS
|
|
|
|
from ...fluid.layers import edit_distance #DEFINE_ALIAS
|
|
from ...fluid.layers import huber_loss #DEFINE_ALIAS
|
|
from ...fluid.layers import sampled_softmax_with_cross_entropy #DEFINE_ALIAS
|
|
from ...fluid.layer_helper import LayerHelper
|
|
from ...fluid.framework import Variable
|
|
|
|
__all__ = [
|
|
'bpr_loss',
|
|
'center_loss',
|
|
'cross_entropy',
|
|
'dice_loss',
|
|
'edit_distance',
|
|
'huber_loss',
|
|
'iou_similarity',
|
|
'kl_div',
|
|
'l1_loss',
|
|
'log_loss',
|
|
'mse_loss',
|
|
'margin_ranking_loss',
|
|
# 'nce',
|
|
'nll_loss',
|
|
'npair_loss',
|
|
'rank_loss',
|
|
'sampled_softmax_with_cross_entropy',
|
|
'sigmoid_cross_entropy_with_logits',
|
|
'sigmoid_focal_loss',
|
|
'smooth_l1',
|
|
'softmax_with_cross_entropy',
|
|
'square_error_cost',
|
|
'ssd_loss',
|
|
'teacher_student_sigmoid_loss'
|
|
]
|
|
|
|
|
|
def margin_ranking_loss(input,
|
|
other,
|
|
target,
|
|
margin=0.0,
|
|
reduction='mean',
|
|
name=None):
|
|
"""
|
|
|
|
This op the calcluate the the margin rank loss between the input x, y and target, use the math function as follows.
|
|
|
|
.. math::
|
|
margin\_rank\_loss = max(0, -target * (input - other) + margin)
|
|
|
|
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
|
|
|
|
.. math::
|
|
Out = MEAN(margin\_rank\_loss)
|
|
|
|
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
|
|
|
|
.. math::
|
|
Out = SUM(margin\_rank\_loss)
|
|
|
|
If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.
|
|
|
|
Parameters:
|
|
input(Tensor): the first input tensor, it's data type should be float32, float64.
|
|
other(Tensor): the second input tensor, it's data type should be float32, float64.
|
|
target(Tensor): the target value corresponding to input, it's data type should be float32, float64.
|
|
margin (float, optional): The margin value to add, default value is 0;
|
|
reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
|
|
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
|
|
|
|
Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
paddle.disable_static()
|
|
|
|
x = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32'))
|
|
y = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32'))
|
|
target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32'))
|
|
loss = paddle.nn.functional.margin_ranking_loss(x, y, target)
|
|
print(loss.numpy()) # [0.75]
|
|
"""
|
|
if fluid.framework.in_dygraph_mode():
|
|
out = core.ops.elementwise_sub(other, input)
|
|
out = core.ops.elementwise_mul(out, target)
|
|
if margin != 0.0:
|
|
margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
|
|
out = core.ops.elementwise_add(out, margin)
|
|
out = core.ops.relu(out)
|
|
if reduction == 'sum':
|
|
return core.ops.reduce_sum(out, 'reduce_all', True)
|
|
elif reduction == 'mean':
|
|
return core.ops.mean(out)
|
|
return out
|
|
|
|
helper = LayerHelper("margin_ranking_loss", **locals())
|
|
fluid.data_feeder.check_variable_and_dtype(
|
|
input, 'input', ['float32', 'float64'], 'margin_rank_loss')
|
|
fluid.data_feeder.check_variable_and_dtype(
|
|
other, 'other', ['float32', 'float64'], 'margin_rank_loss')
|
|
fluid.data_feeder.check_variable_and_dtype(
|
|
target, 'target', ['float32', 'float64'], 'margin_rank_loss')
|
|
|
|
out = paddle.elementwise_sub(other, input)
|
|
out = paddle.multiply(out, target)
|
|
|
|
if margin != 0.0:
|
|
margin_var = out.block.create_var(dtype=out.dtype)
|
|
paddle.fill_constant([1], out.dtype, margin, out=margin_var)
|
|
out = paddle.add(out, margin_var)
|
|
|
|
result_out = helper.create_variable_for_type_inference(input.dtype)
|
|
|
|
if reduction == 'none':
|
|
helper.append_op(
|
|
type="relu", inputs={"X": out}, outputs={"Out": result_out})
|
|
return result_out
|
|
elif reduction == 'sum':
|
|
out = paddle.nn.functional.relu(out)
|
|
attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
|
|
helper.append_op(
|
|
type="reduce_sum",
|
|
inputs={"X": out},
|
|
outputs={"Out": result_out},
|
|
attrs=attrs)
|
|
return result_out
|
|
elif reduction == 'mean':
|
|
out = paddle.nn.functional.relu(out)
|
|
helper.append_op(
|
|
type="mean",
|
|
inputs={"X": out},
|
|
outputs={"Out": result_out},
|
|
attrs={})
|
|
return result_out
|
|
|
|
|
|
def l1_loss(x, label, reduction='mean', name=None):
|
|
"""
|
|
This operator computes the L1 Loss of Tensor ``x`` and ``label`` as follows.
|
|
|
|
If :attr:`reduction` set to ``'none'``, the loss is:
|
|
|
|
.. math::
|
|
Out = \lvert x - label\rvert
|
|
|
|
If :attr:`reduction` set to ``'mean'``, the loss is:
|
|
|
|
.. math::
|
|
Out = MEAN(\lvert x - label\rvert)
|
|
|
|
If :attr:`reduction` set to ``'sum'``, the loss is:
|
|
|
|
.. math::
|
|
Out = SUM(\lvert x - label\rvert)
|
|
|
|
|
|
Parameters:
|
|
x (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
|
|
label (Tensor): label. The shapes is [N, *], same shape as ``x`` . It's data type should be float32, float64, int32, int64.
|
|
reduction (str, optional): Indicate the reduction to apply to the loss,
|
|
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
|
|
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
|
|
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
|
|
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
|
|
Default is ``'mean'``.
|
|
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
|
|
Returns:
|
|
Tensor, the L1 Loss of Tensor ``x`` and ``label``.
|
|
If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``x`` .
|
|
If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
|
|
Examples:
|
|
.. code-block:: python
|
|
import paddle
|
|
import numpy as np
|
|
|
|
paddle.disable_static()
|
|
x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
|
|
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
|
|
x = paddle.to_variable(x_data)
|
|
label = paddle.to_variable(label_data)
|
|
|
|
l1_loss = paddle.nn.functional.l1_loss(x, label)
|
|
print(l1_loss.numpy())
|
|
# [0.35]
|
|
|
|
l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='none')
|
|
print(l1_loss.numpy())
|
|
# [[0.20000005 0.19999999]
|
|
# [0.2 0.79999995]]
|
|
|
|
l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='sum')
|
|
print(l1_loss.numpy())
|
|
# [1.4]
|
|
"""
|
|
if reduction not in ['sum', 'mean', 'none']:
|
|
raise ValueError(
|
|
"The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
|
|
"received %s, which is not allowed." % reduction)
|
|
|
|
if in_dygraph_mode():
|
|
unreduced = _elementwise_op_in_dygraph(
|
|
x, label, axis=-1, act='abs', op_name='elementwise_sub')
|
|
if reduction == 'mean':
|
|
return core.ops.mean(unreduced)
|
|
elif reduction == 'sum':
|
|
return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
|
|
'reduce_all', True)
|
|
else:
|
|
return unreduced
|
|
|
|
fluid.data_feeder.check_variable_and_dtype(
|
|
x, 'x', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
|
|
fluid.data_feeder.check_variable_and_dtype(
|
|
label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
|
|
|
|
if reduction == 'sum':
|
|
unreduced = paddle.elementwise_sub(x, label, act='abs')
|
|
return paddle.sum(unreduced, name=name)
|
|
elif reduction == 'mean':
|
|
unreduced = paddle.elementwise_sub(x, label, act='abs')
|
|
return paddle.mean(unreduced, name=name)
|
|
else:
|
|
return paddle.elementwise_sub(x, label, act='abs', name=name)
|
|
|
|
|
|
def nll_loss(input,
|
|
label,
|
|
weight=None,
|
|
ignore_index=-100,
|
|
reduction='mean',
|
|
name=None):
|
|
"""
|
|
This api returns negative log likelihood.
|
|
See more detail in :ref:`api_nn_loss_NLLLoss` .
|
|
|
|
Parameters:
|
|
input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
|
|
But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
|
|
The data type is float32, float64.
|
|
label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
|
|
The data type is int64.
|
|
weight (Tensor, optional): Weight tensor, a manual rescaling weight given
|
|
to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
|
|
it treated as if having all ones. the data type is
|
|
float32, float64, Default is ``'None'``.
|
|
ignore_index (int64, optional): Specifies a target value that is ignored
|
|
and does not contribute to the input gradient.
|
|
reduction (str, optional): Indicate how to average the loss,
|
|
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
|
|
If `reduction` is ``'mean'``, the reduced mean loss is returned;
|
|
if `reduction` is ``'sum'``, the reduced sum loss is returned;
|
|
if `reduction` is ``'none'``, no reduction will be apllied.
|
|
Default is ``'mean'``.
|
|
name (str, optional): Name for the operation (optional, default is None).
|
|
For more information, please refer to :ref:`api_guide_Name`.
|
|
|
|
Returns:
|
|
`Tensor`, the value of negative log likelihood loss.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
import paddle
|
|
import numpy as np
|
|
from paddle.nn.functional import nll_loss
|
|
log_softmax = paddle.nn.LogSoftmax(axis=1)
|
|
|
|
input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
|
|
[0.53331435, 0.07999352, 0.8549948 ],
|
|
[0.25879037, 0.39530203, 0.698465 ],
|
|
[0.73427284, 0.63575995, 0.18827209],
|
|
[0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
|
|
label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
|
|
|
|
place = paddle.CPUPlace()
|
|
paddle.disable_static(place)
|
|
input = paddle.to_variable(input_np)
|
|
log_out = log_softmax(input)
|
|
label = paddle.to_variable(label_np)
|
|
result = nll_loss(log_out, label)
|
|
print(result.numpy()) # [1.0720209]
|
|
"""
|
|
if reduction not in ['sum', 'mean', 'none']:
|
|
raise ValueError(
|
|
"The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
|
|
"'none', but received %s, which is not allowed." % reduction)
|
|
|
|
input_shape = list(input.shape)
|
|
input_dims = len(input_shape)
|
|
if input_dims < 2:
|
|
raise ValueError('Expected 2 or more dimensions (got {})'.format(
|
|
input_dims))
|
|
n = input_shape[0]
|
|
c = input_shape[1]
|
|
if in_dygraph_mode():
|
|
if input_dims != 2 and input_dims != 4:
|
|
input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1])
|
|
label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1])
|
|
out_shape = [n] + input_shape[2:]
|
|
out, total_weight = core.ops.nll_loss(input, label, weight,
|
|
'ignore_index', ignore_index,
|
|
'reduction', reduction)
|
|
if input_dims != 2 and input_dims != 4 and reduction == 'none':
|
|
out, _ = core.ops.reshape2(out, 'shape', out_shape)
|
|
return out
|
|
|
|
helper = LayerHelper('nll_loss', **locals())
|
|
|
|
if input_dims != 2 and input_dims != 4:
|
|
input = reshape(input, shape=[n, c, 1, -1])
|
|
label = reshape(label, shape=[n, 1, -1])
|
|
out_shape = [n] + input_shape[2:]
|
|
|
|
fluid.data_feeder.check_variable_and_dtype(
|
|
input, 'input', ['float32', 'float64'], 'nll_loss')
|
|
fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
|
|
'nll_loss')
|
|
inputs = {'X': input, 'Label': label}
|
|
attrs = {'reduction': reduction, 'ignore_index': ignore_index}
|
|
if weight is not None:
|
|
if isinstance(weight, Variable):
|
|
inputs['Weight'] = weight
|
|
|
|
out = helper.create_variable_for_type_inference(dtype=input.dtype)
|
|
total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
|
|
outputs = {'Out': out, 'Total_weight': total_weight}
|
|
|
|
helper.append_op(
|
|
type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
|
|
if input_dims != 2 and input_dims != 4 and reduction == 'none':
|
|
out = reshape(out, shape=out_shape)
|
|
|
|
return out
|
|
|
|
|
|
def kl_div(input, label, reduction='mean', name=None):
|
|
"""
|
|
This operator calculates the Kullback-Leibler divergence loss
|
|
between Input(X) and Input(Target). Notes that Input(X) is the
|
|
log-probability and Input(Target) is the probability.
|
|
|
|
KL divergence loss is calculated as follows:
|
|
|
|
$$l(x, y) = y * (\log(y) - x)$$
|
|
|
|
While :math:`x` is input and :math:`y` is label.
|
|
|
|
While :attr:`reduction` is :attr:`none`, output loss is in
|
|
the same shape as input, loss in each point is calculated
|
|
seperately and no reduction is applied.
|
|
|
|
While :attr:`reduction` is :attr:`mean`, output loss is in
|
|
shape of [1] and loss value is the mean value of all losses.
|
|
|
|
While :attr:`reduction` is :attr:`sum`, output loss is in
|
|
shape of [1] and loss value is the sum value of all losses.
|
|
|
|
While :attr:`reduction` is :attr:`batchmean`, output loss is
|
|
in shape of [1] and loss value is the sum value of all losses
|
|
divided by batch size.
|
|
|
|
Args:
|
|
input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
|
|
any number of additional dimensions. It's data type should be float32, float64.
|
|
label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
|
|
reduction (Tensor): Indicate how to average the loss,
|
|
the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
|
|
If `reduction` is ``'mean'``, the reduced mean loss is returned;
|
|
If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
|
|
if `reduction` is ``'sum'``, the reduced sum loss is returned;
|
|
if `reduction` is ``'none'``, no reduction will be apllied.
|
|
Default is ``'mean'``.
|
|
name(str, optional): Name for the operation (optional, default is None). For more information,
|
|
please refer to :ref:`api_guide_Name`.
|
|
|
|
Returns:
|
|
Tensor: The KL divergence loss. The data type is same as input tensor
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
import numpy as np
|
|
import paddle.nn.functional as F
|
|
|
|
paddle.enable_imperative()
|
|
|
|
shape = (5, 20)
|
|
input = np.random.uniform(-10, 10, shape).astype('float32')
|
|
target = np.random.uniform(-10, 10, shape).astype('float32')
|
|
|
|
# 'batchmean' reduction, loss shape will be [N]
|
|
pred_loss = F.kl_div(paddle.to_variable(input),
|
|
paddle.to_variable(target), reduction='batchmean')
|
|
# shape=[5]
|
|
|
|
# 'mean' reduction, loss shape will be [1]
|
|
pred_loss = F.kl_div(paddle.to_variable(input),
|
|
paddle.to_variable(target), reduction='mean')
|
|
# shape=[1]
|
|
|
|
# 'sum' reduction, loss shape will be [1]
|
|
pred_loss = F.kl_div(paddle.to_variable(input),
|
|
paddle.to_variable(target), reduction='sum')
|
|
# shape=[1]
|
|
|
|
# 'none' reduction, loss shape is same with input shape
|
|
pred_loss = F.kl_div(paddle.to_variable(input),
|
|
paddle.to_variable(target), reduction='none')
|
|
# shape=[5, 20]
|
|
|
|
"""
|
|
if paddle.in_dynamic_mode():
|
|
out = core.ops.kldiv_loss(input, label, 'reduction', reduction)
|
|
return out
|
|
|
|
helper = LayerHelper('kl_div', **locals())
|
|
|
|
fluid.data_feeder.check_variable_and_dtype(input, 'input',
|
|
['float32', 'float64'], 'kl_div')
|
|
fluid.data_feeder.check_variable_and_dtype(label, 'label',
|
|
['float32', 'float64'], 'kl_div')
|
|
fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
|
|
|
|
loss = helper.create_variable_for_type_inference(dtype=input.dtype)
|
|
helper.append_op(
|
|
type='kldiv_loss',
|
|
inputs={'X': input,
|
|
'Target': label},
|
|
outputs={'Loss': loss},
|
|
attrs={'reduction': reduction})
|
|
return loss
|
|
|
|
|
|
def mse_loss(input, label, reduction='mean', name=None):
|
|
"""
|
|
This op accepts input predications and label and returns the mean square error.
|
|
|
|
If :attr:`reduction` is set to ``'none'``, loss is calculated as:
|
|
|
|
.. math::
|
|
Out = (input - label)^2
|
|
|
|
If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
|
|
|
|
.. math::
|
|
Out = \operatorname{mean}((input - label)^2)
|
|
|
|
If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
|
|
|
|
.. math::
|
|
Out = \operatorname{sum}((input - label)^2)
|
|
|
|
Parameters:
|
|
input (Tensor): Input tensor, the data type should be float32 or float64.
|
|
label (Tensor): Label tensor, the data type should be float32 or float64.
|
|
reduction (string, optional): The reduction method for the output,
|
|
could be 'none' | 'mean' | 'sum'.
|
|
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
|
|
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
|
|
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
|
|
Default is ``'mean'``.
|
|
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
Returns:
|
|
Tensor: The tensor tensor storing the mean square error difference of input and label.
|
|
|
|
Return type: Tensor.
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
import numpy as np
|
|
import paddle
|
|
|
|
|
|
# static graph mode
|
|
paddle.enable_static()
|
|
mse_loss = paddle.nn.loss.MSELoss()
|
|
input = paddle.data(name="input", shape=[1])
|
|
label = paddle.data(name="label", shape=[1])
|
|
place = paddle.CPUPlace()
|
|
input_data = np.array([1.5]).astype("float32")
|
|
label_data = np.array([1.7]).astype("float32")
|
|
|
|
output = mse_loss(input,label)
|
|
exe = paddle.static.Executor(place)
|
|
exe.run(paddle.static.default_startup_program())
|
|
output_data = exe.run(
|
|
paddle.static.default_main_program(),
|
|
feed={"input":input_data, "label":label_data},
|
|
fetch_list=[output],
|
|
return_numpy=True)
|
|
print(output_data)
|
|
# [array([0.04000002], dtype=float32)]
|
|
|
|
# dynamic graph mode
|
|
paddle.disable_static()
|
|
input = paddle.to_variable(input_data)
|
|
label = paddle.to_variable(label_data)
|
|
output = mse_loss(input, label)
|
|
print(output.numpy())
|
|
# [0.04000002]
|
|
|
|
"""
|
|
|
|
if reduction not in ['sum', 'mean', 'none']:
|
|
raise ValueError(
|
|
"'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
|
|
"but received {}.".format(reduction))
|
|
|
|
if not paddle.fluid.framework.in_dygraph_mode():
|
|
paddle.fluid.data_feeder.check_variable_and_dtype(
|
|
input, 'input', ['float32', 'float64'], 'mse_loss')
|
|
paddle.fluid.data_feeder.check_variable_and_dtype(
|
|
label, 'label', ['float32', 'float64'], 'mse_loss')
|
|
|
|
if reduction == 'none':
|
|
return paddle.fluid.layers.square(
|
|
paddle.fluid.layers.elementwise_sub(input, label), name=name)
|
|
elif reduction == 'mean':
|
|
return paddle.mean(
|
|
paddle.fluid.layers.square(
|
|
paddle.fluid.layers.elementwise_sub(input, label)),
|
|
name=name)
|
|
else:
|
|
return paddle.sum(paddle.fluid.layers.square(
|
|
paddle.fluid.layers.elementwise_sub(input, label)),
|
|
name=name)
|