You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
4.6 KiB
168 lines
4.6 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
/*! \file */
|
|
|
|
/*! \namespace paddle */
|
|
namespace paddle {
|
|
|
|
/** This is a pass builder based on string. It is part of inference API.
|
|
*/
|
|
class PaddlePassBuilder {
|
|
public:
|
|
explicit PaddlePassBuilder(const std::vector<std::string> &passes)
|
|
: passes_(passes) {}
|
|
|
|
void SetPasses(std::initializer_list<std::string> passes) {
|
|
passes_ = passes;
|
|
}
|
|
|
|
/** Append a pass to the end of the passes. */
|
|
void AppendPass(const std::string &pass_type);
|
|
|
|
/** Insert a pass to a specific position.
|
|
* @param idx the position to insert.
|
|
* @param pass_type the pass key.
|
|
*/
|
|
void InsertPass(size_t idx, const std::string &pass_type);
|
|
|
|
/** Delete the `idx`-th pass. */
|
|
void DeletePass(size_t idx);
|
|
|
|
/** Delete all the passes that has type `pass_type`. */
|
|
void DeletePass(const std::string &pass_type);
|
|
|
|
void ClearPasses();
|
|
/** Append an analysis pass. */
|
|
void AppendAnalysisPass(const std::string &pass);
|
|
|
|
/** Visualize the computation graph after each pass by generating a DOT
|
|
* language file, one can draw them with the Graphviz toolkit.
|
|
*/
|
|
void TurnOnDebug();
|
|
|
|
/** Human-readible information. */
|
|
std::string DebugString();
|
|
|
|
const std::vector<std::string> &AllPasses() const { return passes_; }
|
|
std::vector<std::string> AnalysisPasses() const {
|
|
auto passes = analysis_passes_;
|
|
// To make sure the ir_graph_to_program should be the last pass so any
|
|
// modication of IR will persist to the program.
|
|
passes.push_back("ir_graph_to_program_pass");
|
|
return passes;
|
|
}
|
|
|
|
protected:
|
|
std::vector<std::string> analysis_passes_{
|
|
{"ir_graph_build_pass", "ir_graph_clean_pass", "ir_analysis_pass",
|
|
"ir_params_sync_among_devices_pass", "adjust_cudnn_workspace_size_pass",
|
|
"inference_op_replace_pass"}};
|
|
std::vector<std::string> passes_;
|
|
};
|
|
|
|
/**Pass strategy to help control the IR passes.
|
|
*/
|
|
class PassStrategy : public PaddlePassBuilder {
|
|
public:
|
|
explicit PassStrategy(const std::vector<std::string> &passes)
|
|
: PaddlePassBuilder(passes) {}
|
|
|
|
/** Enable the use of cuDNN kernel
|
|
*/
|
|
virtual void EnableCUDNN() {}
|
|
|
|
/** The MKLDNN control exists in both CPU and GPU mode, because there can be
|
|
* still some CPU kernels running in CPU mode.
|
|
*/
|
|
virtual void EnableMKLDNN() {}
|
|
|
|
/** Enable NGRAPH optimization
|
|
*/
|
|
virtual void EnableNgraph() {}
|
|
|
|
/** Enable MKLDNN quantize optimization
|
|
*/
|
|
virtual void EnableMkldnnQuantizer() {}
|
|
|
|
bool use_gpu() const { return use_gpu_; }
|
|
|
|
virtual ~PassStrategy() = default;
|
|
|
|
protected:
|
|
bool use_ngraph_{false};
|
|
bool use_gpu_{false};
|
|
bool use_mkldnn_{false};
|
|
};
|
|
|
|
/** The CPU passes controller, it is used in AnalysisPredictor with CPU mode.
|
|
*/
|
|
class CpuPassStrategy : public PassStrategy {
|
|
public:
|
|
CpuPassStrategy();
|
|
|
|
explicit CpuPassStrategy(const CpuPassStrategy &other)
|
|
: PassStrategy(other.AllPasses()) {
|
|
use_gpu_ = other.use_gpu_;
|
|
use_ngraph_ = other.use_ngraph_;
|
|
use_mkldnn_ = other.use_mkldnn_;
|
|
use_mkldnn_quantizer_ = other.use_mkldnn_quantizer_;
|
|
}
|
|
|
|
virtual ~CpuPassStrategy() = default;
|
|
|
|
void EnableCUDNN() override;
|
|
void EnableNgraph() override;
|
|
void EnableMKLDNN() override;
|
|
void EnableMkldnnQuantizer() override;
|
|
|
|
protected:
|
|
bool use_ngraph_{false};
|
|
bool use_mkldnn_quantizer_{false};
|
|
};
|
|
|
|
/** The GPU passes strategy, it is used in AnalysisPredictor with GPU mode.
|
|
*/
|
|
class GpuPassStrategy : public PassStrategy {
|
|
public:
|
|
GpuPassStrategy();
|
|
|
|
explicit GpuPassStrategy(const GpuPassStrategy &other)
|
|
: PassStrategy(other.AllPasses()) {
|
|
use_gpu_ = true;
|
|
use_cudnn_ = other.use_cudnn_;
|
|
}
|
|
|
|
void EnableCUDNN() override;
|
|
void EnableNgraph() override;
|
|
void EnableMKLDNN() override;
|
|
void EnableMkldnnQuantizer() override;
|
|
|
|
virtual ~GpuPassStrategy() = default;
|
|
|
|
protected:
|
|
bool use_cudnn_{false};
|
|
};
|
|
|
|
extern const std::vector<std::string> kTRTSubgraphPasses;
|
|
extern const std::vector<std::string> kAnakinSubgraphPasses;
|
|
|
|
} // namespace paddle
|