You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/distributed/test/dense_table_test.cc

190 lines
6.3 KiB

/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <ThreadPool.h>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/table/common_dense_table.h"
namespace paddle {
namespace distributed {
// CommonDenseTable + Adam
class Table;
TEST(CommonDenseTable, Adam) {
int fea_dim = 10;
int trainers = 2;
float beta1 = 0.9;
float beta2 = 0.999;
float epsilon = 1.0e-8;
TableParameter table_config;
table_config.set_table_class("CommonDenseTable");
FsClientParameter fs_config;
Table *table = new CommonDenseTable();
TableAccessorParameter *accessor_config = table_config.mutable_accessor();
accessor_config->set_accessor_class("CommMergeAccessor");
CommonAccessorParameter *common_config = table_config.mutable_common();
// set adam optimize config
common_config->set_name("adam");
common_config->set_table_name("adam_test_table");
common_config->set_trainer_num(trainers);
common_config->add_params("Param");
common_config->add_dims(fea_dim);
common_config->add_initializers("gaussian_random&0&0.0&1.0");
common_config->add_params("LearningRate");
common_config->add_dims(1);
common_config->add_initializers("fill_constant&1.0");
common_config->add_params("Moment1");
common_config->add_dims(fea_dim);
common_config->add_initializers("fill_constant&0.0");
common_config->add_params("Moment2");
common_config->add_dims(fea_dim);
common_config->add_initializers("fill_constant&0.0");
common_config->add_params("Beta1Pow");
common_config->add_dims(1);
common_config->add_initializers("fill_constant&1.0");
common_config->add_params("Beta2Pow");
common_config->add_dims(1);
common_config->add_initializers("fill_constant&1.0");
auto ret = table->initialize(table_config, fs_config);
ASSERT_EQ(ret, 0);
// pull parameters for create and check
std::vector<float> init_values;
init_values.resize(fea_dim);
table->pull_dense(init_values.data(), fea_dim);
// push gradient
std::vector<std::vector<float>> trainer_gradient_values;
trainer_gradient_values.resize(trainers);
float start = 10.0;
for (int i = 0; i < trainers; i++) {
for (int k = 0; k < fea_dim; k++) {
trainer_gradient_values[i].push_back(start);
start += 0.1;
}
}
// for adam
for (int i = 0; i < trainers; i++) {
auto &push_values = trainer_gradient_values[i];
table->push_dense(push_values.data(), push_values.size());
}
std::vector<float> pull_values;
pull_values.resize(fea_dim);
table->pull_dense(pull_values.data(), fea_dim);
std::vector<float> beta1_pow, beta2_pow, lr, mom1, mom2, param;
beta1_pow.push_back(beta1);
beta2_pow.push_back(beta2);
lr.push_back(1.0);
for (int i = 0; i < fea_dim; i++) {
mom1.push_back(0.0);
mom2.push_back(0.0);
param.push_back(init_values[i]);
}
for (int i = 0; i < trainers; i++) {
auto lr_ = lr[0] * sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);
for (int j = 0; j < fea_dim; j++) {
mom1[j] = beta1 * mom1[j] + (1 - beta1) * trainer_gradient_values[i][j];
mom2[j] = beta2 * mom2[j] +
(1 - beta2) * trainer_gradient_values[i][j] *
trainer_gradient_values[i][j];
param[j] =
param[j] -
lr_ * (mom1[j] / (sqrt(mom2[j]) + epsilon * sqrt(1 - beta2_pow[0])));
}
beta1_pow[0] *= beta1;
beta2_pow[0] *= beta2;
}
for (int j = 0; j < fea_dim; j++) {
ASSERT_TRUE(abs(param[j] - pull_values[j]) < 1e-5);
}
}
// CommonDenseTable + Adam
TEST(CommonDenseTable, SGD) {
int fea_dim = 10;
int trainers = 2;
TableParameter table_config;
table_config.set_table_class("CommonDenseTable");
FsClientParameter fs_config;
Table *table = new CommonDenseTable();
TableAccessorParameter *accessor_config = table_config.mutable_accessor();
accessor_config->set_accessor_class("CommMergeAccessor");
CommonAccessorParameter *common_config = table_config.mutable_common();
common_config->set_name("sgd");
common_config->set_table_name("sgd_test_table");
common_config->set_trainer_num(trainers);
common_config->add_params("Param");
common_config->add_dims(fea_dim);
common_config->add_initializers("gaussian_random&0&0.0&1.0");
common_config->add_params("LearningRate");
common_config->add_dims(1);
common_config->add_initializers("fill_constant&1.0");
auto ret = table->initialize(table_config, fs_config);
ASSERT_EQ(ret, 0);
// pull parameters for create and check
std::vector<float> init_values;
init_values.resize(fea_dim);
table->pull_dense(init_values.data(), fea_dim);
std::vector<float> total_gradients;
total_gradients.resize(fea_dim);
memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size());
// push gradient
std::vector<std::vector<float>> trainer_gradient_values;
trainer_gradient_values.resize(trainers);
float start = 10.0;
for (int i = 0; i < trainers; i++) {
for (int k = 0; k < fea_dim; k++) {
trainer_gradient_values[i].push_back(start);
total_gradients[k] += start;
start += 0.1;
}
}
std::shared_ptr<::ThreadPool> pool_ =
std::make_shared<::ThreadPool>(trainers);
std::vector<std::future<void>> task_status;
for (int i = 0; i < trainers; i++) {
auto &push_values = trainer_gradient_values[i];
auto task = [table, &push_values] {
table->push_dense(push_values.data(), push_values.size());
};
task_status.push_back(pool_->enqueue(std::move(task)));
}
for (auto &status : task_status) {
status.wait();
}
std::vector<float> pull_values;
pull_values.resize(fea_dim);
table->pull_dense(pull_values.data(), fea_dim);
for (int j = 0; j < fea_dim; j++) {
auto update_val = init_values[j] - 1.0 * total_gradients[j];
ASSERT_TRUE(abs(update_val - pull_values[j]) < 1e-5);
}
}
} // namespace distributed
} // namespace paddle