You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py

283 lines
11 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from __future__ import print_function
from __future__ import division
import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
def _get_node_num(endpoints):
ss = set()
for ep in endpoints:
ip = ep.split(":")[0].strip()
if ip not in ss:
ss.add(ip)
return len(ss)
class PipelineHelper(object):
def __init__(self, role_maker, wait_port='6174'):
self.wait_port = wait_port
self.role_maker = role_maker
def update_startup_program(self,
startup_program=None,
inner_parallelism=None):
self.startup_program = startup_program
nranks = self.role_maker._worker_num()
rank = self.role_maker._worker_index()
endpoints = self.role_maker._get_trainer_endpoints()
current_endpoint = endpoints[rank]
node_num = _get_node_num(endpoints)
assert nranks % node_num == 0
# Create ring 0 for all gpus in the same pipeline
if inner_parallelism > 1:
pipeline_rank = rank % inner_parallelism
pipeline_id = rank // inner_parallelism
start_index = pipeline_id * inner_parallelism
pipeline_endpoints = endpoints[start_index:start_index +
inner_parallelism]
self._init_communicator(self.startup_program, current_endpoint,
pipeline_endpoints, pipeline_rank, 0,
self.wait_port)
pipeline_num = len(endpoints) // inner_parallelism
if pipeline_num == 1: return
# Create rings for gpus with the same pipeline id for data parallel
eps = []
pipeline_rank = rank % inner_parallelism
ring_id = pipeline_rank + 1
for i in range(pipeline_num):
eps.append(endpoints[i * inner_parallelism + pipeline_rank])
# rank in a ring of gpus with the same pipeline id for data parallel
dp_rank = rank // inner_parallelism
self._init_communicator(self.startup_program, current_endpoint, eps,
dp_rank, ring_id, self.wait_port)
self._broadcast_params(ring_id)
def _init_communicator(self, program, current_endpoint, endpoints, rank,
ring_id, wait_port):
nranks = len(endpoints)
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=unique_name.generate('nccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints,
OP_ROLE_KEY: OpRole.Forward,
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward,
})
def _broadcast_params(self, ring_id):
block = self.startup_program.global_block()
for var_name in block.vars:
if "nccl_id" in var_name: continue
param = block.var(var_name)
if not param.persistable:
continue
block.append_op(
type='c_broadcast',
inputs={'X': param},
outputs={'Out': param},
attrs={
'ring_id': ring_id,
'root': 0,
OP_ROLE_KEY: OpRole.Forward
})
block.append_op(
type='c_sync_comm_stream',
inputs={'X': param},
outputs={'Out': param},
attrs={'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward})
class PipelineOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(PipelineOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(PipelineOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
self.num_microbatches = user_defined_strategy.pipeline_configs[
'micro_batch']
def _can_apply(self):
if not self.role_maker._is_collective:
return False
if self.user_defined_strategy.pipeline == True:
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.pipeline = False
dist_strategy.pipeline_configs = {}
def _enable_strategy(self, dist_strategy, context):
dist_strategy.pipeline = True
dist_strategy.pipeline_configs = {"micro_batch": 1, }
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
endpoints = self.role_maker._get_trainer_endpoints()
current_endpoint = endpoints[self.role_maker._worker_index()]
self.wrapped_opt = PO(self.inner_opt,
num_microbatches=self.num_microbatches)
node_num = _get_node_num(endpoints)
gpus_per_node = len(endpoints) // node_num
self.startup_program = startup_program
if startup_program is None:
self.startup_program = fluid.default_startup_program()
self.rank = self.role_maker._worker_index()
self.nranks = self.role_maker._worker_num()
assert self.nranks % node_num == 0
loss.block.program._pipeline_opt = dict()
loss.block.program._pipeline_opt['local_rank'] = self.rank
optimize_ops, params_grads, prog_list = self.wrapped_opt.minimize(
loss, startup_program, parameter_list, no_grad_set)
assert prog_list
self.main_program_list = prog_list
self.main_program = loss.block.program
self.inner_parallelism = loss.block.program._pipeline_opt[
'inner_parallelism']
assert self.nranks % self.inner_parallelism == 0
pipeline_helper = PipelineHelper(self.role_maker)
pipeline_helper.update_startup_program(
self.startup_program._pipeline_opt["startup_program"],
self.inner_parallelism)
pipeline_num = self.nranks // self.inner_parallelism
self._transpile_main_program(loss, pipeline_num, self.inner_parallelism)
return optimize_ops, params_grads
def _transpile_main_program(self, loss, pipeline_num, inner_parallelism):
if pipeline_num <= 1: return
self._insert_loss_grad_ops(loss, pipeline_num)
for ring_id in range(1, inner_parallelism + 1):
self._insert_allreduce_ops(ring_id)
def _insert_loss_grad_ops(self, loss, pipeline_num):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block = self.main_program_list[-1]['program'].global_block()
for idx, op in reversed(list(enumerate(block.ops))):
if is_loss_grad_op(op):
loss_grad_var = block.vars[op.output_arg_names[0]]
block._insert_op(
idx + 1,
type='scale',
inputs={'X': loss_grad_var},
outputs={'Out': loss_grad_var},
attrs={
'scale': 1.0 / pipeline_num,
OP_ROLE_KEY: OpRole.Backward
})
def _insert_allreduce_ops(self, ring_id):
block = self.main_program_list[ring_id - 1]['program'].global_block()
origin_block = self.main_program.global_block()
grad = None
for idx, op in reversed(list(enumerate(block.ops))):
if is_backward_op(op) and \
OP_ROLE_VAR_KEY in op.attr_names:
op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
if len(op_role_var) == 0:
continue
assert len(op_role_var) % 2 == 0
offset = idx
for i in range(0, len(op_role_var), 2):
param = block.vars[op_role_var[i]]
grad = block.vars[op_role_var[i + 1]]
origin_param = origin_block.vars[op_role_var[i]]
if origin_param.is_distributed:
continue
if offset == idx:
offset += 1
block._insert_op(
offset,
type='c_sync_calc_stream',
inputs={'X': grad},
outputs={'Out': grad},
attrs={OP_ROLE_KEY: OpRole.Backward})
offset += 1
block._insert_op(
offset,
type='c_allreduce_sum',
inputs={'X': grad},
outputs={'Out': grad},
attrs={
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Backward
})
if grad is None:
return
for idx, op in enumerate(block.ops):
if is_optimizer_op(op):
block._insert_op(
idx,
type='c_sync_comm_stream',
inputs={'X': grad},
outputs={'Out': grad},
attrs={'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Backward})
break