You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/convert/prelu_op.cc

118 lines
4.5 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* PRelu converter from fluid to tensorRT.
*/
class PReluOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert fluid prelu op to tensorrt prelu layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
size_t input_num = op_desc.Input("X").size();
PADDLE_ENFORCE_EQ(input_num, 1UL,
platform::errors::InvalidArgument(
"Invalid input X's size of prelu TRT converter. "
"Expected 1, received %d.",
input_num));
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
// Get output
size_t output_num = op_desc.Output("Out").size();
PADDLE_ENFORCE_EQ(output_num, 1UL,
platform::errors::InvalidArgument(
"Invalid output Out's size of prelu TRT converter. "
"Expected 1, received %d.",
output_num));
// Get attrs
std::string mode = BOOST_GET_CONST(std::string, op_desc.GetAttr("mode"));
//
auto* alpha_var = scope.FindVar(op_desc.Input("Alpha")[0]);
PADDLE_ENFORCE_NOT_NULL(
alpha_var, platform::errors::NotFound(
"Variable Alpha of prelu TRT converter is not found."));
auto* alpha_tensor = alpha_var->GetMutable<framework::LoDTensor>();
platform::CPUPlace cpu_place;
std::unique_ptr<framework::LoDTensor> alpha_tensor_temp(
new framework::LoDTensor());
alpha_tensor_temp->Resize(alpha_tensor->dims());
TensorCopySync(*alpha_tensor, cpu_place, alpha_tensor_temp.get());
float* alpha_data = alpha_tensor_temp->mutable_data<float>(cpu_place);
nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
plugin::PReluPluginDynamic* plugin = new plugin::PReluPluginDynamic(
alpha_data, alpha_tensor_temp->numel(), mode);
layer = engine_->AddPluginV2(&input, input_num, plugin);
#else
PADDLE_THROW(platform::errors::Fatal(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"));
#endif
} else {
#if IS_TRT_VERSION_GE(7000)
float* alpha_weight_data = engine_->GetWeightCPUData(
op_desc.Input("Alpha")[0], alpha_tensor, false);
TensorRTEngine::Weight alpha_weight{
nvinfer1::DataType::kFLOAT, static_cast<void*>(alpha_weight_data),
static_cast<size_t>(alpha_tensor->numel())};
nvinfer1::Dims dims;
dims.nbDims = 0;
// jump batch dim
for (int i = 1; i < alpha_tensor->dims().size(); i++) {
dims.d[dims.nbDims++] = alpha_tensor->dims()[i];
}
for (; dims.nbDims < input->getDimensions().nbDims; dims.nbDims++) {
dims.d[dims.nbDims] = 1;
}
auto alpha_layer =
TRT_ENGINE_ADD_LAYER(engine_, Constant, dims, alpha_weight.get());
auto alpha_layer_output = alpha_layer->getOutput(0);
layer = TRT_ENGINE_ADD_LAYER(engine_, ParametricReLU, *input,
*alpha_layer_output);
#else
plugin::PReluPlugin* plugin =
new plugin::PReluPlugin(alpha_data, alpha_tensor_temp->numel(), mode);
layer = engine_->AddPlugin(&input, input_num, plugin);
#endif
}
// keep alpha tensor to avoid release it's memory
engine_->SetWeights(op_desc.Input("Alpha")[0],
std::move(alpha_tensor_temp));
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "prelu", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(prelu, PReluOpConverter);