You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py

1767 lines
75 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import numpy as np
from ..... import compat as cpt
from .... import core
from ....framework import IrGraph
from ....framework import IrNode
from ....framework import Operator
from .... import unique_name
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
__all__ = [
'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
'TransformForMobilePass', 'OutScaleForTrainingPass',
'OutScaleForInferencePass', 'AddQuantDequantPass'
]
_fake_quant_op_list = [
'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]
_fake_dequant_op_list = [
'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]
_fake_quant_dequant_op_list = [
'fake_quantize_dequantize_moving_average_abs_max'
]
_out_scale_op_list = [
"conv2d", "depthwise_conv2d", "mul", "matmul", "relu", "leaky_relu",
"relu6", "sigmoid", "tanh", "prelu", "swish", "softmax", "batch_norm",
"elementwise_add", "pool2d", "reshape2", "transpose2", "concat"
]
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
"conv2d": [["Input", "Filter"], ["Output"]],
"depthwise_conv2d": [["Input", "Filter"], ["Output"]],
"mul": [["X", "Y"], ["Out"]],
"matmul": [["X", "Y"], ["Out"]],
"pool2d": [["X"], ["Out"]],
"elementwise_add": [["X", "Y"], ["Out"]],
"concat": [["X"], ["Out"]],
"softmax": [["X"], ["Out"]],
"argmax": [["X"], ["Out"]],
"transpose": [["X"], ["Out"]],
"equal": [["X", "Y"], ["Out"]],
"gather": [["X"], ["Out"]],
"greater_equal": [["X", "Y"], ["Out"]],
"greater_than": [["X", "Y"], ["Out"]],
"less_equal": [["X", "Y"], ["Out"]],
"less_than": [["X", "Y"], ["Out"]],
"mean": [["X"], ["Out"]],
"not_equal": [["X", "Y"], ["Out"]],
"reshape": [["X"], ["Out"]],
"reshape2": [["X"], ["Out"]],
"transpose2": [["X"], ["Out"]],
"bilinear_interp": [["X"], ["Out"]],
"nearest_interp": [["X"], ["Out"]],
"trilinear_interp": [["X"], ["Out"]],
"slice": [["Input"], ["Out"]],
"squeeze": [["X"], ["Out"]],
"elementwise_sub": [["X", "Y"], ["Out"]],
"relu": [["X"], ["Out"]],
"relu6": [["X"], ["Out"]],
"leaky_relu": [["X"], ["Out"]],
"prelu": [["X"], ["Out"]],
"tanh": [["X"], ["Out"]],
"swish": [["X"], ["Out"]],
"dropout": [["X"], ["Out"]],
"batch_norm": [["X"], ["Y"]],
"sigmoid": [["X"], ["Out"]],
}
def _get_op_input_var_names(op):
""" """
assert isinstance(op, (IrNode, Operator)), \
"The input op should be IrNode or Operator."
var_names = []
op_name = op.name() if isinstance(op, IrNode) \
else op.type
name_list = _op_real_in_out_name[op_name][0]
for name in name_list:
var_name = op.input(name)
if isinstance(var_name, list):
var_names.extend(var_name)
else:
var_names.append(var_name)
return var_names
def _get_op_output_var_names(op):
""" """
assert isinstance(op, (IrNode, Operator)), \
"The input op should be IrNode or Operator."
var_names = []
op_name = op.name() if isinstance(op, IrNode) \
else op.type
name_list = _op_real_in_out_name[op_name][1]
for name in name_list:
var_name = op.output(name)
if isinstance(var_name, list):
var_names.extend(var_name)
else:
var_names.append(var_name)
return var_names
def _init_var_node(var_node, value, scope, place):
assert isinstance(value,
np.ndarray), 'The type of value should be numpy array.'
assert scope is not None, \
'The scope cannot be set None.'
assert place is not None, \
'The place cannot be set None.'
tensor = scope.var(var_node.name()).get_tensor()
tensor.set(value, place)
def _is_input_all_not_persistable(graph, op_node):
'''
Analyse the real inputs of the op node are all not persistable.
'''
is_input_all_not_persistable = True
for var_name in _get_op_input_var_names(op_node):
in_node = graph._find_node_by_name(op_node.inputs, var_name)
is_input_all_not_persistable = (is_input_all_not_persistable and \
(not in_node.persistable()))
return is_input_all_not_persistable
class QuantizationTransformPass(object):
"""
Quantize the ops that have weights. Add quant and dequant ops for the quantized
ops's inputs.
"""
_supported_quantizable_op_type = [
'conv2d', 'depthwise_conv2d', 'mul', 'matmul'
]
def __init__(self,
scope=None,
place=None,
weight_bits=8,
activation_bits=8,
activation_quantize_type='abs_max',
weight_quantize_type='abs_max',
window_size=10000,
moving_rate=0.9,
skip_pattern=['skip_quant'],
quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
weight_quantize_func=None,
act_quantize_func=None,
weight_preprocess_func=None,
act_preprocess_func=None,
optimizer_func=None,
executor=None):
"""
Constructor.
Args:
scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
type, this pass will create some new parameters. The scope is used to
initialize these new parameters.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
parameters described above.
weight_bits(int): quantization bit number for weights,
the bias is not quantized.
activation_bits(int): quantization bit number for activation.
activation_quantize_type(str): quantization type for activation,
now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
If use 'abs_max' mode, the quantization scale will be calculated
dynamically each step in both training and testing period. If use
'range_abs_max', a static quantization scale will be calculated
during training and used in inference.
weight_quantize_type(str): quantization type for weights,
support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
usually is not used for weight, since weights are fixed once the
model is well trained.
window_size(int): the window size for 'range_abs_max' quantization.
moving_rate(float): the param for 'moving_average_abs_max' quantization.
skip_pattern(str or str list): The user-defined quantization skip pattern, which
will be presented in the name scope of an op. When the skip pattern is
detected in an op's name scope, the corresponding op will not be quantized.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
weight_quantize_func(function): Function that defines how to quantize weight. Using this
can quickly test if user's quantization method works or not. In this function, user should
both define quantization function and dequantization function, that is, the function's input
is non-quantized weight and function returns dequantized weight. If None, will use
quantization op defined by 'weight_quantize_type'.
Default is None.
act_quantize_func(function): Function that defines how to quantize activation. Using this
can quickly test if user's quantization method works or not. In this function, user should
both define quantization and dequantization process, that is, the function's input
is non-quantized activation and function returns dequantized activation. If None, will use
quantization op defined by 'activation_quantize_type'.
Default is None.
weight_preprocess_func(function): Function that defines how to preprocess weight before quantization. Using this
can quickly test if user's preprocess method works or not. The function's input
is non-quantized weight and function returns processed weight to be quantized. If None, the weight will
be quantized directly.
Default is None.
act_preprocess_func(function): Function that defines how to preprocess activation before quantization. Using this
can quickly test if user's preprocess method works or not. The function's input
is non-quantized activation and function returns processed activation to be quantized. If None, the activation will
be quantized directly.
Default is None.
optimizer_func(function): Fuction return a optimizer. When 'is_test' is False and user want to use self-defined
quantization function and preprocess function, this function must be set. Default is None.
executor(Fluid.Executor): If user want to use self-defined quantization function and preprocess function,
executor must be set for initialization. Default is None.
Examples:
.. code-block:: python
# The original graph will be rewrite.
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization \
import QuantizationTransformPass
from paddle.fluid.contrib.slim.graph import IrGraph
from paddle.fluid import core
graph = IrGraph(core.Graph(program.desc), for_test=False)
place = fluid.CPUPlace()
transform_pass = QuantizationTransformPass(fluid.global_scope(),
place)
transform_pass.apply(graph)
"""
self._scope = scope
self._place = place
self._weight_bits = weight_bits
self._activation_bits = activation_bits
self._skip_pattern = skip_pattern
self._weight_quantize_func = weight_quantize_func
self._act_quantize_func = act_quantize_func
self._weight_preprocess_func = weight_preprocess_func
self._act_preprocess_func = act_preprocess_func
self._optimizer = optimizer_func
self._exe = executor
quant_type = [
'abs_max', 'channel_wise_abs_max', 'range_abs_max',
'moving_average_abs_max'
]
assert activation_quantize_type != 'channel_wise_abs_max', \
"The activation quantization type does not support 'channel_wise_abs_max'."
if activation_quantize_type not in quant_type:
raise ValueError(
"Unknown activation_quantize_type : '%s'. It can only be "
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
(str(activation_quantize_type)))
if weight_quantize_type not in quant_type:
raise ValueError(
"Unknown weight_quantize_type: '%s'. It can only be "
"'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
% (str(weight_quantize_type)))
self._activation_quantize_type = activation_quantize_type
self._weight_quantize_type = weight_quantize_type
self._window_size = window_size
self._moving_rate = moving_rate
self._quantizable_ops = quantizable_op_type
for op in self._quantizable_ops:
assert op in QuantizationTransformPass._supported_quantizable_op_type, \
op + " is not supported for quantization."
self._conv_ops = ['conv2d', 'depthwise_conv2d']
self._quantizable_grad_ops = [
'%s_grad' % (op) for op in self._quantizable_ops
]
self._is_test = None
self._global_step = None
self.create_var_map = {}
self.create_op_map = {}
def _create_new_node(self, graph, in_node):
"""
create a node that same with in_node in graph
Args:
graph(IrGraph): create node in graph.
in_node(IrVarNode): create node that same with in_node.
Returns:
created new node
"""
key = ''
for inp in in_node.inputs:
key = key + inp.name()
key = key + in_node.name()
for inp in in_node.outputs:
key = key + inp.name()
if key in self.create_var_map.keys():
new_node = self.create_var_map[key]
elif in_node.is_ctrl_var():
new_node = graph.create_control_dep_var()
self.create_var_map[key] = new_node
else:
new_node = graph.create_var_node_from_desc(in_node.node.var())
self.create_var_map[key] = new_node
return new_node
def _copy_graph(self, graph, source_graph, op_node):
"""
copy op_node in source_graph to graph. And will run recursively
for next ops that link to op_node's outputs.
Args:
graph(IrGraph): target graph to copy.
source_graph(IrGraph): source graph to copy.
op_node(IrOpNode): op node in source_graph.
Returns:
None
"""
key = ''
for inp in op_node.inputs:
key = key + inp.name()
key = key + op_node.name()
for inp in op_node.outputs:
key = key + inp.name()
has_created = False
if key in self.create_op_map.keys():
new_op_node = self.create_op_map[key]
has_created = True
else:
new_op_node = graph.create_op_node_from_desc(op_node.node.op())
self.create_op_map[key] = new_op_node
if has_created:
return
for in_node in op_node.inputs:
new_node = self._create_new_node(graph, in_node)
graph.link_to(new_node, new_op_node)
for in_node in op_node.outputs:
new_node = self._create_new_node(graph, in_node)
graph.link_to(new_op_node, new_node)
for var_node in op_node.outputs:
for next_op_node in var_node.outputs:
self._copy_graph(graph, source_graph, next_op_node)
return
def _insert_func(self, graph, func, var_node, op):
"""
Insert a tmp program that returned by func between var_node and op.
Args:
graph(IrGraph): target graph to insert tmp program.
func(Function): function to define a tmp program
var_node(IrVarNode): node in target graph.
op(IrOpNode): op in target graph.
Returns:
op's new input that replaces var_node
"""
tmp_program = Program()
startup_program = Program()
with program_guard(tmp_program, startup_program):
with unique_name.guard(var_node.name() + "_"):
in_node = data(
var_node.name() + '_tmp_input',
shape=var_node.shape(),
dtype='float32')
out_node = func(in_node)
graph.out_node_mapping_table[out_node.name] = var_node.name()
# loss shape must be 1 when minimize
loss = mean(out_node)
if not graph._for_test:
assert self._optimizer, "optimizer_func must be set when graph is test graph"
in_node.stop_gradient = False
optimizer = self._optimizer()
optimizer.minimize(loss)
with scope_guard(self._scope):
self._exe.run(startup_program)
tmp_graph = IrGraph(
core.Graph(tmp_program.desc), for_test=graph._for_test)
in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
in_node.name)
out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
out_node.name)
in_node_params = []
in_op_node = []
# copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
for node in tmp_graph.all_var_nodes():
if node.inputs == [] and node.persistable():
in_node_params.append(node)
for node in tmp_graph.all_op_nodes():
if node.inputs == []:
in_op_node.append(node)
for node in in_node.outputs:
self._copy_graph(graph, tmp_graph, node)
for node in in_node_params:
for op_node in node.outputs:
self._copy_graph(graph, tmp_graph, op_node)
for node in in_op_node:
self._copy_graph(graph, tmp_graph, node)
target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
in_node.name())
target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
out_node.name())
loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
outputs = target_in_node.outputs
for node in outputs:
graph.update_input_link(target_in_node, var_node, node)
graph.update_input_link(var_node, target_out_node, op)
# update grad
if not graph._for_test:
op_out = op.outputs[0]
op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
op_out.name() + "@GRAD")
# find op's gradient op, such as conv2d_grad
op_grad = op_out_grad.outputs[0]
target_out_grad_node = graph._find_node_by_name(
graph.all_var_nodes(), target_out_node.name() + "@GRAD")
in_node_grad = graph._find_node_by_name(
graph.all_var_nodes(), target_in_node.name() + "@GRAD")
in_node_grad_op = in_node_grad.inputs
# update op_grad's input
graph.update_input_link(var_node, target_out_node, op_grad)
op_grad_out = None
# find var_node's corresponding grad node
for node in op_grad.outputs:
if var_node.name() + "@GRAD" in node.name():
op_grad_out = node
# update op_grad's output
if op_grad_out is not None:
graph.update_output_link(op_grad_out, target_out_grad_node,
op_grad)
else:
graph.link_to(op_grad, target_out_grad_node)
for node in in_node_grad_op:
graph.update_input_link(target_in_node, var_node, node)
if op_grad_out:
graph.update_output_link(in_node_grad, op_grad_out, node)
# remove useless nodes
mean_grad = target_out_grad_node.inputs[0]
mean_out_grad = mean_grad.inputs[0]
fill_constant_node = mean_out_grad.inputs[0]
graph.safe_remove_nodes(mean_grad)
graph.safe_remove_nodes(mean_out_grad)
graph.safe_remove_nodes(fill_constant_node)
graph.safe_remove_nodes(in_node_grad)
graph.safe_remove_nodes(loss_node.inputs[0])
graph.safe_remove_nodes(loss_node)
graph.safe_remove_nodes(target_in_node)
return target_out_node
def apply(self, graph):
"""
Quantize the graph for training process. According to weight and
activation quantization type, the graph will be added some fake
quantize operators and fake dequantize operators.
Args:
graph(IrGraph): the applied graph.
Returns:
None
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._is_test = graph.is_test()
# marked the variable which has been dequantized.
dequantized_vars = collections.OrderedDict()
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
processed_vars = []
def _quant_preprocess(op_node):
user_skipped = False
if isinstance(self._skip_pattern, list):
user_skipped = op_node.op().has_attr("op_namescope") and \
any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
elif isinstance(self._skip_pattern, str):
user_skipped = op_node.op().has_attr("op_namescope") and \
op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
if user_skipped:
op_node.op()._set_attr("skip_quant", True)
def _transform_forward(graph, op):
op.op()._set_attr("quantization_type", "qat_with_weight")
inputs = op.inputs
for var_node in inputs:
if var_node.name() not in op.input_arg_names():
continue
if var_node.name() in dequantized_vars:
dequant_var_node = dequantized_vars[var_node.name()]
else:
name = var_node.name()
if name in processed_vars:
continue
if var_node.name() in persistable_vars:
is_weight = True
else:
is_weight = False
# if var node is weight and weight_preprocess_func is not None,
# will insert weight preprocess func
# to preorocess weight before quantization
# if var node is activation and act_preprocess_func is not None,
# will insert activation preprocess func
# to preorocess activation before quantization
if is_weight and self._weight_preprocess_func is not None:
var_node = self._insert_func(
graph, self._weight_preprocess_func, var_node, op)
elif not is_weight and self._act_preprocess_func is not None:
var_node = self._insert_func(
graph, self._act_preprocess_func, var_node, op)
# if var node is weight and weight_quantize_func is not None,
# will insert weight quantize func to quantize and dequantize weight
# if var node is activation and act_quantize_func is not None,
# will insert act quantize func to quantize and dequantize activation
if is_weight and self._weight_quantize_func is not None:
target_out_node = self._insert_func(
graph, self._weight_quantize_func, var_node, op)
processed_vars.append(name)
continue
elif not is_weight and self._act_quantize_func is not None:
target_out_node = self._insert_func(
graph, self._act_quantize_func, var_node, op)
processed_vars.append(name)
continue
quant_bits = self._weight_bits if var_node.name() in persistable_vars \
else self._activation_bits
quant_type = self._weight_quantize_type if is_weight \
else self._activation_quantize_type
if quant_type == 'channel_wise_abs_max':
assert is_weight, "'channel_wise_abs_max' can only be applied on weights."
if op.name() in self._conv_ops:
quant_var_node, scale_var_node = self._insert_channel_quant_op(
graph, var_node, name, quant_bits)
dequant_var_node = self._insert_channel_dequant_op(
graph, quant_var_node, [scale_var_node],
[quant_bits])
else:
quant_var_node, scale_var_node = self._insert_quant_op(
graph, var_node, name, quant_bits, 'abs_max')
dequant_var_node = self._insert_dequant_op(
graph, quant_var_node, scale_var_node,
quant_bits)
else:
quant_var_node, scale_var_node = self._insert_quant_op(
graph, var_node, name, quant_bits, quant_type)
dequant_var_node = self._insert_dequant_op(
graph, quant_var_node, scale_var_node, quant_bits)
dequantized_vars[name] = dequant_var_node
graph.update_input_link(var_node, dequant_var_node, op)
def _transform_backward(graph, op):
for var_node in op.inputs:
if var_node.name() not in op.input_arg_names():
continue
if var_node.name() in dequantized_vars:
dequant_var_node = dequantized_vars[var_node.name()]
graph.update_input_link(var_node, dequant_var_node, op)
if not self._is_test:
self._create_global_step(graph)
ops = graph.all_op_nodes()
# Do the preproccess of quantization, such as skipping some ops
# for not being quantized.
for op in ops:
if op.name() in self._quantizable_ops or \
op.name() in self._quantizable_grad_ops:
_quant_preprocess(op)
# Insert mapping table to solve the problem in saving inference model.
graph.out_node_mapping_table = dict()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
for op in ops:
if op.name() in self._quantizable_ops:
if not self._is_skip_quant(graph, op):
_transform_forward(graph, op)
# The loop for renaming the inputs of backward op.
for op in ops:
if op.name() in self._quantizable_grad_ops:
_transform_backward(graph, op)
graph.resolve_hazard()
return graph
def _create_global_step(self, graph):
if self._weight_quantize_type == 'range_abs_max' or \
self._activation_quantize_type == 'range_abs_max':
counter_name = cpt.to_text('@STEP_COUNTER@')
for node in graph.all_var_nodes():
if node.name() == counter_name:
self._global_step = node
if self._global_step is None:
global_step_in = graph.create_persistable_node(
name=counter_name,
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=core.VarDesc.VarType.INT64)
_init_var_node(
global_step_in,
np.zeros(
[1], dtype='int64'),
self._scope,
self._place)
global_step_out = graph.create_var_node_from_desc(
global_step_in.var())
# The attribute of `op_role` is needed by ParallelExecutor.
increment_op = graph.create_op_node(
op_type='increment',
attrs={
'step': 1.0,
'op_role':
core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': global_step_in},
outputs={'Out': global_step_out})
graph.link_to(global_step_in, increment_op)
graph.link_to(increment_op, global_step_out)
self._global_step = global_step_out
def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
"""
Insert fake_quantize_op in the graph.
"""
if quant_type == 'abs_max':
return self._insert_quant_abs_max_op(graph, var_node, name,
quant_bits)
elif quant_type == 'range_abs_max':
return self._insert_quant_range_abs_max_op(graph, var_node, name,
quant_bits)
elif quant_type == 'moving_average_abs_max':
return self._insert_quant_moving_average_abs_max_op(
graph, var_node, name, quant_bits)
def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
"""
Insert fake_quantize_abs_max op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_var_node = graph.create_var_node(
name=self._quantized_scale_name(name),
var_type=var_node.type(),
shape=[1],
var_dtype=var_node.dtype())
quant_op_node = graph.create_op_node(
op_type='fake_quantize_abs_max',
attrs={
'bit_length': quant_bits,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
return quant_var_node, scale_var_node
def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
"""
Insert fake_quantize_range_abs_max on the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name=self._quantized_scale_name(name),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[0.001], dtype=data_type),
self._scope,
self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
inputs = {'X': var_node, 'InScale': scale_in_node}
outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
# The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
scales_node = graph.create_persistable_node(
name=unique_name.generate('scales'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[self._window_size],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scales_node,
np.zeros(
[self._window_size], dtype=data_type),
self._scope,
self._place)
inputs['Iter'] = self._global_step
outputs['OutScales'] = scales_node
attrs = {
'window_size': self._window_size,
'bit_length': quant_bits,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_range_abs_max',
attrs=attrs,
inputs=inputs,
outputs=outputs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(self._global_step, quant_op_node)
graph.link_to(quant_op_node, scales_node)
return quant_var_node, scale_out_node
def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
quant_bits):
"""Insert fake_quantize_moving_average_abs_max
"""
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name=self._quantized_scale_name(name),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[0.001], dtype=data_type),
self._scope,
self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
ins = {'X': var_node, 'InScale': scale_in_node}
outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
state_in_node = graph.create_persistable_node(
name=unique_name.generate('state'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('accum'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(state_in_node.var(
))
accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
))
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
outs['OutState'] = state_out_node
outs['OutAccum'] = accum_out_node
attrs = {
'bit_length': quant_bits,
'moving_rate': self._moving_rate,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_moving_average_abs_max',
attrs=attrs,
inputs=ins,
outputs=outs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(state_in_node, quant_op_node)
graph.link_to(accum_in_node, quant_op_node)
graph.link_to(quant_op_node, state_out_node)
graph.link_to(quant_op_node, accum_out_node)
return quant_var_node, scale_out_node
def _insert_channel_quant_op(self, graph, var_node, name, quant_bits):
"""
Insert fake_channel_wise_quantize_abs_max op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_var_node = graph.create_var_node(
name=self._quantized_scale_name(name),
var_type=var_node.type(),
shape=[var_node.shape()[0]],
var_dtype=var_node.dtype())
quant_op_node = graph.create_op_node(
op_type='fake_channel_wise_quantize_abs_max',
attrs={
'bit_length': quant_bits,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
return quant_var_node, scale_var_node
def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
"""
Insert fake_dequantize_op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
max_range = (1 << (quant_bits - 1)) - 1
dequant_op_node = graph.create_op_node(
op_type='fake_dequantize_max_abs',
attrs={
'max_range': float(max_range),
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node,
'Scale': scale_var_node},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
return dequant_var_node
def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
quant_bits):
"""
Insert fake_channel_wise_dequantize_max_abs in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
dequant_op_node = graph.create_op_node(
op_type='fake_channel_wise_dequantize_max_abs',
attrs={
'quant_bits': quant_bits,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node,
'Scales': scale_var_nodes},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
for scale_n in scale_var_nodes:
graph.link_to(scale_n, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
return dequant_var_node
def _quantized_var_name(self, var_name):
"""
Return quantized variable name for the input `var_name`.
"""
return "%s.quantized" % (var_name)
def _dequantized_var_name(self, var_name):
"""
Return dequantized variable name for the input `var_name`.
"""
return "%s.dequantized" % (var_name)
def _quantized_scale_name(self, var_name):
"""
Return the scale name of quantized variable for the input `var_name`.
"""
return "%s.scale" % (var_name)
def _is_skip_quant(self, graph, op_node):
"""
Analyse whether the op node skips quantization.
"""
is_skip = False
if op_node.op().has_attr("skip_quant") and \
op_node.op().attr("skip_quant"):
is_skip = True
# if the inputs of mul and matmul are not all persistable, use
# AddQuantDequantPass to quantize them.
if op_node.name() in ["mul", "matmul"] and \
_is_input_all_not_persistable(graph, op_node):
is_skip = True
if op_node.op().has_attr("quantization_type") and \
op_node.op().attr("quantization_type") == "qat_without_weight":
is_skip = True
return is_skip
class QuantizationFreezePass(object):
def __init__(self,
scope,
place,
weight_bits=8,
activation_bits=8,
weight_quantize_type='abs_max',
quantizable_op_type=None):
"""
The freeze pass is used to adjust the quantize operator order, for example:
1) `activation -> quant -> dequant -> conv2d` will be frozen into
`activation -> quant -> conv2d -> dequant`
2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
and weight will be scaled offline.
Args:
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
weight_bits(int): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
will process all quantized op, so it is not necessary to set the input param.
"""
assert scope is not None, \
'The scope cannot be set None.'
assert place is not None, \
'The place cannot be set None.'
self._scope = scope
self._place = place
self._weight_bits = weight_bits
self._activation_bits = activation_bits
self._weight_quantize_type = weight_quantize_type
self._conv_ops = ['conv2d', 'depthwise_conv2d']
self._fake_quant_op_names = _fake_quant_op_list
self._fake_dequant_op_names = _fake_dequant_op_list
self._op_input_rename_map = collections.OrderedDict()
self._op_output_rename_map = collections.OrderedDict()
self._quant_var_scale_map = collections.OrderedDict()
def apply(self, graph):
"""
Adjust quantize/dequantize operators order for the inference process.
Args:
graph(IrGraph): the applied graph.
Returns:
None
"""
# Get input scales in fake quant op and process weights
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
ops = graph.all_op_nodes()
for op_node in ops:
op_name = op_node.name()
if op_name in self._fake_quant_op_names:
input_arg_name = op_node.input('X')[0]
if hasattr(graph, 'out_node_mapping_table'):
if input_arg_name in graph.out_node_mapping_table.keys():
input_arg_name = graph.out_node_mapping_table[
input_arg_name]
if input_arg_name in persistable_vars:
if self._weight_quantize_type == 'abs_max':
param = self._load_var(input_arg_name)
scale_v = np.max(np.abs(param))
elif self._weight_quantize_type == 'channel_wise_abs_max':
param = self._load_var(input_arg_name)
if len(param.shape) == 4: # conv2d or depthwise_conv2d
scale_v = []
for i in range(param.shape[0]):
scale_v.append(np.max(np.abs(param[i])))
else:
scale_v = np.max(np.abs(param))
else:
scale_v = self._load_var(
op_node.output('OutScale')[0])[0]
self._quant_var_scale_map[input_arg_name] = scale_v
self._remove_fake_quant_and_dequant_op(graph, op_node)
# quantize weight and restore
param_v = self._load_var(input_arg_name)
quantized_param_v = self._quant(param_v, scale_v,
self._weight_bits)
self._restore_var(input_arg_name, quantized_param_v)
else:
scale_v = graph._find_node_by_name(
op_node.outputs, op_node.output('OutScale')[0])
self._quant_var_scale_map[input_arg_name] = scale_v
# Remove all fake dequant op
ops = graph.all_op_nodes()
for op_node in ops:
op_name = op_node.name()
if op_name in self._fake_dequant_op_names:
self._remove_fake_quant_and_dequant_op(graph, op_node)
# Insert post dequant op
ops = graph.all_op_nodes()
for op_node in ops:
op_node_desc = op_node.op()
if op_node_desc.has_attr("quantization_type") and \
op_node_desc.attr("quantization_type") == "qat_with_weight":
if self._weight_quantize_type == 'channel_wise_abs_max' \
and op_node.name() in self._conv_ops:
self._insert_post_channel_dequant_op(graph, op_node)
else:
self._insert_post_dequant_op(graph, op_node)
# Rename inputs of the followed ops after inserting dequant_op after fc/conv
for op_node in ops:
for var_node in op_node.inputs:
if var_node.node in self._op_output_rename_map:
old_in = var_node
new_in = self._op_output_rename_map[var_node.node]
graph.update_input_link(old_in, new_in, op_node)
# remove the unused var node in the graph
self._remove_unused_var_nodes(graph)
graph.resolve_hazard()
return graph
def _remove_fake_quant_and_dequant_op(self, graph, op_node):
k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
if v.node not in self._op_input_rename_map:
self._op_input_rename_map[k.node] = v
else:
self._op_input_rename_map[k.node] = self._op_input_rename_map[
v.node]
graph.safe_remove_nodes(op_node)
def _insert_post_channel_dequant_op(self, graph, op_node):
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
for var_node in op_node.inputs:
name = var_node.name()
if name not in op_node.input_arg_names():
continue
if var_node.node in self._op_input_rename_map:
old_in = var_node
new_in = self._op_input_rename_map[var_node.node]
new_in.clear_outputs()
graph.update_input_link(old_in, new_in, op_node)
original_var_name = self._original_var_name(name)
scale_v = self._quant_var_scale_map[original_var_name]
if original_var_name in persistable_vars:
assert isinstance(
scale_v,
list), 'The scale of parameter %s is not a list.' % (
original_var_name)
channel_scale = np.array(scale_v)
else:
assert isinstance(scale_v, IrNode)
scale_var_node = self._quant_var_scale_map[original_var_name]
if len(op_node.output_arg_names()) != 1:
raise ValueError("Only support one output, but op %s has"
" more than one output." % (op_node.name()))
output_var_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
weight_scale_node = graph.create_persistable_node(
name=unique_name.generate('channel_scale'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[channel_scale.shape[0]],
var_dtype=output_var_node.dtype())
data_type = 'float64' if output_var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(weight_scale_node,
channel_scale.astype(data_type), self._scope,
self._place)
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(output_var_node.name()),
var_type=output_var_node.type(),
shape=output_var_node.shape(),
var_dtype=output_var_node.dtype())
dequant_op_node = graph.create_op_node(
op_type='fake_channel_wise_dequantize_max_abs',
attrs={
'quant_bits': [self._weight_bits, self._activation_bits],
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={
'X': output_var_node,
'Scales': [weight_scale_node, scale_var_node]
},
outputs={'Out': dequant_var_node})
graph.link_to(output_var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(weight_scale_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
self._op_output_rename_map[output_var_node.node] = dequant_var_node
return dequant_var_node
def _insert_post_dequant_op(self, graph, op_node):
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
max_range = 1
param_range = (1 << (self._weight_bits - 1)) - 1
act_range = (1 << (self._activation_bits - 1)) - 1
for var_node in op_node.inputs:
name = var_node.name()
if name not in op_node.input_arg_names():
continue
if var_node.node in self._op_input_rename_map:
old_in = var_node
new_in = self._op_input_rename_map[var_node.node]
new_in.clear_outputs()
graph.update_input_link(old_in, new_in, op_node)
original_var_name = self._original_var_name(name)
scale_v = self._quant_var_scale_map[original_var_name]
if original_var_name in persistable_vars:
assert self._is_float(
scale_v), 'The scale of parameter %s is not a float.' % (
original_var_name)
max_range *= param_range / scale_v
else:
max_range *= act_range
assert isinstance(scale_v, IrNode)
scale_var_node = self._quant_var_scale_map[original_var_name]
if len(op_node.output_arg_names()) != 1:
raise ValueError("Only support one output, but op %s has"
" more than one output." % (op_node.name()))
output_var_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(output_var_node.name()),
var_type=output_var_node.type(),
shape=output_var_node.shape(),
var_dtype=output_var_node.dtype())
dequant_op_node = graph.create_op_node(
op_type='fake_dequantize_max_abs',
attrs={
'max_range': float(max_range),
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': output_var_node,
'Scale': scale_var_node},
outputs={'Out': dequant_var_node})
graph.link_to(output_var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
self._op_output_rename_map[output_var_node.node] = dequant_var_node
return dequant_var_node
def _load_var(self, name):
return np.array(self._scope.find_var(name).get_tensor())
def _restore_var(self, name, array):
tensor = self._scope.find_var(name).get_tensor()
tensor.set(array, self._place)
def _remove_unused_var_nodes(self, graph):
all_used_vars = set()
ops = graph.all_op_nodes()
for op_node in ops:
for input_node in op_node.inputs:
all_used_vars.add(input_node)
for output_node in op_node.outputs:
all_used_vars.add(output_node)
all_used_vars = {n.node for n in all_used_vars}
all_unused_vars = {
n
for n in filter(lambda node: node.node not in all_used_vars,
graph.all_var_nodes())
}
graph.safe_remove_nodes(all_unused_vars)
def _original_var_name(self, var_name):
"""
Return the original variable name.
"""
if var_name.endswith('.quantized.dequantized'):
return var_name[:-len('.quantized.dequantized')]
if var_name.endswith('.quantized'):
return var_name[:-len('.quantized')]
if var_name.endswith('.dequantized'):
return var_name[:-len('.dequantized')]
if var_name.endswith('.scale'):
return var_name[:-len('.scale')]
else:
return var_name
def _dequantized_var_name(self, var_name):
"""
Return dequantized variable name for the input `var_name`.
"""
return "%s.dequantized" % (var_name)
def _is_float(self, v):
return isinstance(v, float) or isinstance(v, np.float32) \
or isinstance(v, np.float64)
def _quant(self, x, scale, num_bits):
if isinstance(scale, list):
for i, s in enumerate(scale):
x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
return x
else:
return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
class ConvertToInt8Pass(object):
def __init__(self, scope, place, quantizable_op_type=None):
"""
Convert the weights into int8_t type.
Args:
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
8bits weight tensors.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
will process all quantized op, so it is not necessary to set the input param.
"""
assert scope is not None, \
'The scope cannot be set None.'
assert place is not None, \
'The place cannot be set None.'
self._scope = scope
self._place = place
def apply(self, graph):
"""
Convert weights' type of the graph. After that, the data type of the
graph weights is int8_t.
Args:
graph(IrGraph): the applied graph.
Returns:
None
"""
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
ops = graph.all_op_nodes()
input_map = {}
for op_node in ops:
if op_node.op().has_attr("quantization_type") and \
op_node.op().attr("quantization_type") == "qat_with_weight":
for var_node in op_node.inputs:
name = var_node.name()
if name in persistable_vars:
if name not in input_map:
int8_var_node = self._convert_to_int8(graph,
var_node)
input_map[name] = int8_var_node
graph.update_input_link(var_node, input_map[name],
op_node)
# remove the unused var node in the graph
self._remove_unused_var_nodes(graph)
graph.resolve_hazard()
return graph
def _convert_to_int8(self, graph, var_node):
int8_var_node_name = var_node.name() + ".int8"
int8_var_node = graph.create_persistable_node(
name=cpt.to_text(int8_var_node_name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=core.VarDesc.VarType.INT8)
array = self._load_var(var_node.name())
self._scope.var(int8_var_node_name)
self._store_var(int8_var_node_name, array, np.int8)
return int8_var_node
def _load_var(self, name):
return np.array(self._scope.find_var(name).get_tensor())
def _store_var(self, name, array, dtype):
tensor = self._scope.find_var(name).get_tensor()
tensor.set(array.astype(dtype), self._place)
def _remove_unused_var_nodes(self, graph):
all_used_vars = set()
ops = graph.all_op_nodes()
for op_node in ops:
for input_node in op_node.inputs:
all_used_vars.add(input_node)
for output_node in op_node.outputs:
all_used_vars.add(output_node)
all_used_vars = {n.node for n in all_used_vars}
all_unused_vars = {
n
for n in filter(lambda node: node.node not in all_used_vars,
graph.all_var_nodes())
}
graph.safe_remove_nodes(all_unused_vars)
class TransformForMobilePass(object):
def __init__(self):
"""
This pass is used to convert the frozen graph for paddle-mobile execution.
"""
self._fake_quant_op_names = _fake_quant_op_list
self._fake_dequant_op_names = _fake_dequant_op_list
def apply(self, graph):
"""
Because paddle-mobile use `quantize` an `dequantize` as the names of
quantize operator and dequantize operator, the `apply` function just
realize this logic.
Args:
graph(IrGraph): the graph will be transformed.
Returns:
None
"""
ops = graph.all_op_nodes()
for op_node in ops:
name = op_node.name()
if name in self._fake_quant_op_names:
op_node.set_type('quantize')
quant_node = graph.create_op_node_from_desc(op_node.op())
for input_node in op_node.inputs:
graph.link_to(input_node, quant_node)
for output_node in op_node.outputs:
graph.link_to(quant_node, output_node)
graph.safe_remove_nodes(op_node)
if name in self._fake_dequant_op_names:
op_node.set_type('dequantize')
dequant_node = graph.create_op_node_from_desc(op_node.op())
for input_node in op_node.inputs:
graph.link_to(input_node, dequant_node)
for output_node in op_node.outputs:
graph.link_to(dequant_node, output_node)
graph.safe_remove_nodes(op_node)
graph.resolve_hazard()
return graph
class OutScaleForTrainingPass(object):
def __init__(self, scope=None, place=None, moving_rate=0.9):
"""
This pass is used for calculating output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
"""
self._scope = scope
self._place = place
self._moving_rate = moving_rate
self._is_test = None
self._teller_set = _out_scale_op_list
def apply(self, graph):
"""
Insert the `moving_average_abs_max_scale` op in order to calculate output scales
of operators in the teller_set.
Args:
graph(IrGraph): the target graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._is_test = graph.is_test()
target_ops = []
for op in graph.all_op_nodes():
if op.name() in self._teller_set:
target_ops.append(op)
for op in target_ops:
for output_var_name in _get_op_output_var_names(op):
in_node = graph._find_node_by_name(op.outputs, output_var_name)
out_node = graph.create_var_node_from_desc(in_node.var())
scale_node = graph.create_persistable_node(
name=self._scale_name(in_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=in_node.dtype())
data_type = 'float64' if in_node.dtype() \
== core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
ins = {'X': in_node}
outs = {'Out': out_node, 'OutScale': scale_node}
if not self._is_test:
state_in_node = graph.create_persistable_node(
name=unique_name.generate('scale_state@'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=in_node.dtype(),
shape=[1])
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('scale_accum@'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=in_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(
state_in_node.var())
accum_out_node = graph.create_var_node_from_desc(
accum_in_node.var())
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
outs['OutState'] = state_out_node
outs['OutAccum'] = accum_out_node
attrs = {
'moving_rate': self._moving_rate,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
scale_op_node = graph.create_op_node(
op_type='moving_average_abs_max_scale',
attrs=attrs,
inputs=ins,
outputs=outs)
graph.link_to(in_node, scale_op_node)
graph.link_to(scale_op_node, out_node)
graph.link_to(scale_op_node, scale_node)
if not self._is_test:
graph.link_to(state_in_node, scale_op_node)
graph.link_to(accum_in_node, scale_op_node)
graph.link_to(scale_op_node, state_out_node)
graph.link_to(scale_op_node, accum_out_node)
graph.resolve_hazard()
return graph
def _scale_name(self, var_name):
"""
Return the scale name for the var named `var_name`.
"""
return "%s@scale" % (var_name)
class OutScaleForInferencePass(object):
def __init__(self, scope=None):
"""
This pass is used for setting output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
"""
self._scope = scope
self._teller_set = _out_scale_op_list
def apply(self, graph):
"""
Get output scales from the scope and set these scales in op_descs
of operators in the teller_set.
Args:
graph(IrGraph): the target graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
op_nodes = graph.all_op_nodes()
for op_node in op_nodes:
if op_node.name() in self._teller_set:
output_var_name = _get_op_output_var_names(op_node)
assert len(output_var_name) == 1, "Only support collecting " \
"output for op that only has an activation output for now."
scale_name = self._scale_name(output_var_name[0])
scale_v = np.array(
self._scope.find_var(scale_name).get_tensor())[0]
op_node.op()._set_attr("out_threshold", float(scale_v))
graph.resolve_hazard()
return graph
def _scale_name(self, var_name):
"""
Return the scale name for the var named `var_name`.
"""
return "%s@scale" % (var_name)
class AddQuantDequantPass(object):
"""
Quantize the ops that do not have weights, and add quant_dequant op for the
quantized ops's inputs.
"""
_supported_quantizable_op_type = [
"pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
"equal", "gather", "greater_equal", "greater_than", "less_equal",
"less_than", "mean", "not_equal", "reshape", "reshape2",
"bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
"squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
"leaky_relu", "tanh", "swish"
]
# To be compatible with PaddleSlim, not remove _activation_type for now
_activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]
def __init__(self,
scope=None,
place=None,
moving_rate=0.9,
quant_bits=8,
skip_pattern=["skip_quant"],
quantizable_op_type=["elementwise_add", "pool2d"],
is_full_quantized=False):
"""
Constructor.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
parameters described above.
moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
quantization. Default is 0.9.
quant_bits(int, optional): quantization bit number for activation. Default is 8.
skip_pattern(str, optional): The user-defined quantization skip pattern, which
will be presented in the name scope of an op. When the skip pattern is
detected in an op's name scope, the corresponding op will not be quantized.
Default is 'skip_quant'.
quantizable_op_type(list[str], optional): List the type of ops that will be
quantized. Default is ["elementwise_add", "pool2d"].
is_full_quantized(bool, optional): If set is_full_quantized as True, apply
quantization to all supported quantizable op type. If set is_full_quantized
as False, only apply quantization to the op type according to the input
quantizable_op_type.
"""
self._scope = scope
self._place = place
self._moving_rate = moving_rate
self._quant_bits = quant_bits
self._is_test = None
self._skip_pattern = skip_pattern
if is_full_quantized:
self._quantizable_op_type = \
AddQuantDequantPass._supported_quantizable_op_type
else:
self._quantizable_op_type = quantizable_op_type
for op_type in quantizable_op_type:
assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
op_type + " is not supported for quantization."
self._quantizable_grad_op_type = [
'%s_grad' % (op) for op in self._quantizable_op_type
]
assert self._scope != None, "scope must not be None."
assert self._place != None, "place must not be None."
def apply(self, graph):
"""
Add quant_dequant before some ops, such as the 'elementwise_add' and
'pool2d' op.
Args:
graph(IrGraph): the target graph.
Returns:
None
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._is_test = graph.is_test()
dequantized_vars_map = collections.OrderedDict()
# Forward stage, insert quant_dequant op
all_op_nodes = graph.all_op_nodes()
for op_node in all_op_nodes:
if op_node.name() in self._quantizable_op_type:
is_skip = False
if isinstance(self._skip_pattern, list):
is_skip = op_node.op().has_attr("op_namescope") and \
any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
elif isinstance(self._skip_pattern, str):
is_skip = op_node.op().has_attr("op_namescope") and \
op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
is_quantized = op_node.op().has_attr("quantization_type") and \
op_node.op().attr("quantization_type") == "qat_with_weight"
if is_skip or is_quantized or \
(not _is_input_all_not_persistable(graph, op_node)):
continue
op_node.op()._set_attr("quantization_type",
"qat_without_weight")
op_node.op()._set_attr("activation_bits", self._quant_bits)
arg_names = _get_op_input_var_names(op_node)
for arg_name in arg_names:
in_node = graph._find_node_by_name(op_node.inputs, arg_name)
if arg_name in dequantized_vars_map:
quant_var_node = dequantized_vars_map[arg_name]
else:
quant_var_node, _ = \
self._inser_quant_dequant_moving_average_abs_max_op(
graph, in_node, self._quant_bits)
dequantized_vars_map[arg_name] = quant_var_node
graph.update_input_link(in_node, quant_var_node, op_node)
# Backward stage, update input link
for op_node in all_op_nodes:
if op_node.name() in self._quantizable_grad_op_type:
for input_name in op_node.input_arg_names():
if input_name in dequantized_vars_map:
in_node = graph._find_node_by_name(op_node.inputs,
input_name)
dequant_var_node = dequantized_vars_map[input_name]
graph.update_input_link(in_node, dequant_var_node,
op_node)
graph.resolve_hazard()
return graph
def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
quant_bits):
"""Insert fake_quantize_dequantize_moving_average_abs_max op.
"""
quant_var_node = graph.create_var_node(
name="{}.quant_dequant".format(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name="{}.quant_dequant.scale".format(var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[0.001], dtype=data_type),
self._scope,
self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
ins = {'X': var_node, 'InScale': scale_in_node}
outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
state_in_node = graph.create_persistable_node(
name=unique_name.generate('quant_dequant.state'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('quant_dequant.accum'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(state_in_node.var(
))
accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
))
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
outs['OutState'] = state_out_node
outs['OutAccum'] = accum_out_node
attrs = {
'bit_length': quant_bits,
'moving_rate': self._moving_rate,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_dequantize_moving_average_abs_max',
attrs=attrs,
inputs=ins,
outputs=outs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(state_in_node, quant_op_node)
graph.link_to(accum_in_node, quant_op_node)
graph.link_to(quant_op_node, state_out_node)
graph.link_to(quant_op_node, accum_out_node)
return quant_var_node, scale_out_node