You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
6.4 KiB
185 lines
6.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ReshapeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ReshapeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ReshapeOp should not be null.");
|
|
|
|
const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
PADDLE_ENFORCE(!shape.empty(),
|
|
"The shape information must be set by Attr(shape).");
|
|
|
|
if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
|
|
// If true, set the shape of Output(Out) according to Input(Shape) in
|
|
// ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
return;
|
|
}
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto out_dims = ValidateShape(shape, x_dims);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (x_dims[0] == out_dims[0]) {
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
// are the same.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
|
|
static framework::DDim ValidateShape(const std::vector<int> shape,
|
|
const framework::DDim &in_dims) {
|
|
const int64_t in_size = framework::product(in_dims);
|
|
// only one dimension can be set to -1, whose size will be automatically
|
|
// infered.
|
|
const int64_t unk_dim_val = -1;
|
|
const int64_t copy_dim_val = 0;
|
|
|
|
std::vector<int64_t> output_shape(shape.size(), 0);
|
|
int64_t capacity = 1;
|
|
int unk_dim_idx = -1;
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (shape[i] == unk_dim_val) {
|
|
PADDLE_ENFORCE(
|
|
unk_dim_idx == -1,
|
|
"Only one input dimension of Attr(shape) can be unknown.");
|
|
unk_dim_idx = i;
|
|
} else if (shape[i] == copy_dim_val) {
|
|
PADDLE_ENFORCE(
|
|
static_cast<int>(i) < in_dims.size(),
|
|
"The index of dimension to copy from input shape must be less "
|
|
"than the size of input shape.");
|
|
} else {
|
|
PADDLE_ENFORCE(
|
|
shape[i] > 0,
|
|
"Each input dimension of Attr(shape) must not be negtive except "
|
|
"one unknown dimension.");
|
|
}
|
|
|
|
capacity *= (shape[i] ? shape[i] : in_dims[i]);
|
|
output_shape[i] =
|
|
(shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
|
|
}
|
|
|
|
if (unk_dim_idx != -1) {
|
|
output_shape[unk_dim_idx] = -in_size / capacity;
|
|
// in_size < 0 and is un-determinate in compile time, skip the check,
|
|
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
|
|
// capacity = -24, in_size = -8, output_shape[0] = 0
|
|
// the following check will fail.
|
|
if (in_size > 0) {
|
|
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
|
|
"Invalid shape is given.");
|
|
}
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
|
|
}
|
|
return framework::make_ddim(output_shape);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ReshapeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const {
|
|
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
|
auto *in = ctx.Input<framework::LoDTensor>("X");
|
|
auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
|
|
|
|
framework::DDim out_dims = out->dims();
|
|
|
|
if (shape_tensor) {
|
|
auto *shape_data = shape_tensor->data<int>();
|
|
framework::Tensor cpu_shape_tensor;
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
|
|
shape_data = cpu_shape_tensor.data<int>();
|
|
}
|
|
auto shape =
|
|
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
|
|
out_dims = ReshapeOp::ValidateShape(shape, in->dims());
|
|
}
|
|
if (!in->lod().empty()) {
|
|
PADDLE_ENFORCE_EQ(
|
|
out_dims[0], in->dims()[0],
|
|
"Reshape operator cannot reshape an input sequence batch "
|
|
"into an output sequence batch that has a different "
|
|
"number of time steps. Please consider using "
|
|
"sequence_reshape op.");
|
|
}
|
|
|
|
bool inplace = ctx.Attr<bool>("inplace");
|
|
out->Resize(out_dims);
|
|
if (!inplace) {
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
framework::TensorCopySync(*in, ctx.GetPlace(), out);
|
|
out->Resize(out_dims);
|
|
} else {
|
|
out->ShareDataWith(*in);
|
|
out->Resize(out_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ReshapeGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const {
|
|
auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
|
|
d_x->mutable_data<T>(ctx.GetPlace());
|
|
bool inplace = ctx.Attr<bool>("inplace");
|
|
|
|
auto in_dims = d_x->dims();
|
|
if (!inplace) {
|
|
framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
|
|
ctx.device_context().Wait();
|
|
d_x->Resize(in_dims);
|
|
} else {
|
|
d_x->ShareDataWith(*d_out);
|
|
d_x->Resize(in_dims);
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|