You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.5 KiB
166 lines
5.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/platform/temporary_allocator.h"
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/platform/create_tensor_with_allocationptr.h"
|
|
DECLARE_double(limit_of_temporary_allocation);
|
|
|
|
namespace paddle {
|
|
namespace platform {
|
|
|
|
TEST(temporary_allocator, temporary_allocator) {
|
|
platform::CPUPlace cpu_place;
|
|
TemporaryAllocator alloc(cpu_place);
|
|
alloc.Allocate(100);
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
platform::CUDAPlace gpu_place(0);
|
|
TemporaryAllocator gpu_alloc(gpu_place);
|
|
|
|
auto allocation = gpu_alloc.Allocate(101);
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
gpu_alloc.Release([]() {});
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
|
|
{
|
|
auto allocation = gpu_alloc.Allocate(102);
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
}
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 1);
|
|
gpu_alloc.Release([]() {});
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
#endif
|
|
}
|
|
|
|
TEST(temporary_allocator, add_callback) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
FLAGS_limit_of_temporary_allocation = 10;
|
|
platform::CUDAPlace gpu_place(0);
|
|
TemporaryAllocator gpu_alloc(gpu_place);
|
|
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx =
|
|
static_cast<platform::CUDADeviceContext*>(pool.Get(gpu_place));
|
|
auto stream = dev_ctx->stream();
|
|
bool deleted = false;
|
|
gpu_alloc.SetCallback([stream, &deleted]() {
|
|
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
|
|
PADDLE_ENFORCE(cudaGetLastError());
|
|
deleted = true;
|
|
});
|
|
{ gpu_alloc.Allocate(100); }
|
|
PADDLE_ENFORCE(deleted);
|
|
FLAGS_limit_of_temporary_allocation = -1;
|
|
#endif
|
|
}
|
|
|
|
TEST(temporary_allocator, create_tensor_with_allocationptr) {
|
|
platform::CPUPlace cpu_place;
|
|
TemporaryAllocator cpu_alloc(cpu_place);
|
|
{
|
|
size_t memory_size = 200;
|
|
auto allocation = cpu_alloc.Allocate(memory_size);
|
|
void* address = allocation->ptr();
|
|
int numel = memory_size / sizeof(float);
|
|
framework::Tensor tensor =
|
|
GetTensor<float>(std::move(allocation), framework::make_ddim({numel}));
|
|
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
|
|
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
platform::CUDAPlace gpu_place(0);
|
|
TemporaryAllocator gpu_alloc(gpu_place);
|
|
|
|
{
|
|
size_t memory_size = 300;
|
|
auto allocation = gpu_alloc.Allocate(memory_size);
|
|
void* address = allocation->ptr();
|
|
int numel = memory_size / sizeof(float);
|
|
framework::Tensor tensor =
|
|
GetTensor<float>(std::move(allocation), framework::make_ddim({numel}));
|
|
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
|
|
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
|
|
}
|
|
|
|
// The allocation is not holded now, it should be placed to
|
|
// TemporaryAllocationQueue.
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 1);
|
|
gpu_alloc.Release([]() {});
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
#endif
|
|
}
|
|
|
|
TEST(temporary_allocator, create_tensor_with_allocationptr2) {
|
|
platform::CPUPlace cpu_place;
|
|
TemporaryAllocator cpu_alloc(cpu_place);
|
|
{
|
|
size_t memory_size = 400;
|
|
int numel = memory_size / sizeof(float);
|
|
|
|
framework::Tensor out_side_tensor;
|
|
void* address;
|
|
{
|
|
auto allocation = cpu_alloc.Allocate(memory_size);
|
|
address = allocation->ptr();
|
|
framework::Tensor tensor = GetTensor<float>(
|
|
std::move(allocation), framework::make_ddim({numel}));
|
|
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
|
|
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
|
|
|
|
out_side_tensor.ShareDataWith(tensor);
|
|
}
|
|
PADDLE_ENFORCE_EQ(address, out_side_tensor.data<float>());
|
|
PADDLE_ENFORCE_EQ(out_side_tensor.numel(), numel);
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
platform::CUDAPlace gpu_place(0);
|
|
TemporaryAllocator gpu_alloc(gpu_place);
|
|
{
|
|
void* address;
|
|
size_t memory_size = 500;
|
|
int numel = memory_size / sizeof(float);
|
|
framework::Tensor out_side_tensor;
|
|
{
|
|
auto allocation = gpu_alloc.Allocate(memory_size);
|
|
address = allocation->ptr();
|
|
framework::Tensor tensor = GetTensor<float>(
|
|
std::move(allocation), framework::make_ddim({numel}));
|
|
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
|
|
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
|
|
|
|
out_side_tensor.ShareDataWith(tensor);
|
|
}
|
|
PADDLE_ENFORCE_EQ(address, out_side_tensor.data<float>());
|
|
PADDLE_ENFORCE_EQ(out_side_tensor.numel(), numel);
|
|
// The allocation is holded by out_side_tensor.
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
gpu_alloc.Release([]() {});
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
}
|
|
|
|
// The allocation is not holded now, it should be placed to
|
|
// TemporaryAllocationQueue.
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 1);
|
|
gpu_alloc.Release([]() {});
|
|
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
|
|
#endif
|
|
}
|
|
|
|
} // namespace platform
|
|
} // namespace paddle
|