You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/profiler.py

52 lines
1.9 KiB

import paddle.v2.fluid.core as core
from contextlib import contextmanager
import os
__all__ = ['CudaProfiler']
NVPROF_CONFIG = [
"gpustarttimestamp",
"gpuendtimestamp",
"gridsize3d",
"threadblocksize",
"streamid",
"enableonstart 0",
"conckerneltrace",
]
@contextmanager
def cuda_profiler(output_file, output_mode=None, config=None):
"""The CUDA profiler.
This fuctions is used to profile CUDA program by CUDA runtime application
programming interface. The profiling result will be written into
`output_file` with Key-Value pair format or Comma separated values format.
The user can set the output mode by `output_mode` argument and set the
counters/options for profiling by `config` argument. The default config
is ['gpustarttimestamp', 'gpustarttimestamp', 'gridsize3d',
'threadblocksize', 'streamid', 'enableonstart 0', 'conckerneltrace'].
Args:
output_file (string) : The output file name, the result will be
written into this file.
output_mode (string) : The output mode has Key-Value pair format and
Comma separated values format. It should be 'kvp' or 'csv'.
config (list of string) : The profiler options and counters can refer
to "Compute Command Line Profiler User Guide".
"""
if output_mode is None:
output_mode = 'csv'
if output_mode not in ['kvp', 'csv']:
raise ValueError("The output mode must be 'kvp' or 'csv'.")
config = NVPROF_CONFIG if config is None else config
config_file = 'nvprof_config_file'
with open(config_file, 'wb') as fp:
fp.writelines(["%s\n" % item for item in config])
core.nvprof_init(output_file, output_mode, config_file)
# Enables profiler collection by the active CUDA profiling tool.
core.nvprof_start()
yield
# Disables profiler collection.
core.nvprof_stop()
os.remove(config_file)