You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							123 lines
						
					
					
						
							5.0 KiB
						
					
					
				
			
		
		
	
	
							123 lines
						
					
					
						
							5.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/margin_rank_loss_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class MarginRankLossOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     // input check
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
 | |
|     auto label_dims = ctx->GetInputDim("Label");
 | |
|     auto x1_dims = ctx->GetInputDim("X1");
 | |
|     auto x2_dims = ctx->GetInputDim("X2");
 | |
|     PADDLE_ENFORCE(
 | |
|         (label_dims == x1_dims) && (x1_dims == x2_dims) &&
 | |
|             (label_dims.size() == 2) && (label_dims[1] == 1),
 | |
|         "All inputs must be 2-D tensor with shape [batch_size x 1].");
 | |
|     ctx->SetOutputDim("Activated", label_dims);
 | |
|     ctx->SetOutputDim("Out", label_dims);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X1",
 | |
|              "(2-D tensor with shape [batch_size x 1]) The score for "
 | |
|              "one item X1 to be ranked, from pairwise ranking model.");
 | |
|     AddInput("X2",
 | |
|              "(2-D tensor with shape [batch_size x 1]) The score for "
 | |
|              "another item X2 to be ranked, from pairwise ranking model.");
 | |
|     AddInput("Label",
 | |
|              "(2-D tensor with shape [batch_size x 1]) "
 | |
|              "The label indicating X1 ranked higher than X2 or not, "
 | |
|              "can only be +1 or -1.");
 | |
|     AddOutput("Activated",
 | |
|               "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
 | |
|               "to indicate whether each element of Output(Out) is activated.")
 | |
|         .AsIntermediate();
 | |
|     AddOutput("Out",
 | |
|               "(2-D tensor with shape [batch_size x 1]) "
 | |
|               "The output loss of MarginRankLoss operator.");
 | |
|     AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
 | |
|         .SetDefault(static_cast<T>(0));
 | |
|     AddComment(R"DOC(
 | |
| MarginRankLoss Operator.
 | |
| 
 | |
| This operator measures the loss given a pair of training sample
 | |
| {`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1` 
 | |
| indicating X1 is ranked higher than `X2` and `Label = -1` otherwise. The loss 
 | |
| is calculated as:
 | |
| 
 | |
| $loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
 | |
| 
 | |
| The attribute `margin` here helps make the predictions more robust.
 | |
| Denote the item ranked higher as the positive sample, otherwise the negative 
 | |
| sample. If the score of the two samples satisfies 
 | |
| 
 | |
| $positive sample - negative sample < margin$
 | |
| 
 | |
| the pair of samples will contribute to the final loss, which will backpropagate 
 | |
| and train the ranking model to enlarge the difference between the two scores.
 | |
| 
 | |
| For batch input with size `batch_size`, `X1`, `X2` and `Label`
 | |
| all have the same shape [batch_size x 1].
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MarginRankLossGradOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | |
|                    "Input(Out@GRAD) shouldn't be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Activated"),
 | |
|                    "Intermediate(Activated) shouldn't be null.");
 | |
|     auto dims = ctx->GetInputDim("Label");
 | |
|     ctx->SetOutputDim(framework::GradVarName("X1"), dims);
 | |
|     ctx->SetOutputDim(framework::GradVarName("X2"), dims);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp,
 | |
|                   ops::MarginRankLossOpMaker<float>,
 | |
|                   paddle::framework::DefaultGradOpDescMaker<true>);
 | |
| REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     margin_rank_loss,
 | |
|     ops::MarginRankLossKernel<paddle::platform::CPUDeviceContext, float>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     margin_rank_loss_grad,
 | |
|     ops::MarginRankLossGradKernel<paddle::platform::CPUDeviceContext, float>);
 |