You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/incubate/fleet/base/role_maker.py

242 lines
6.8 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
class RoleMakerBase(object):
"""
RoleMakerBase is a base class for assigning a role to current process
in distributed training.
A paddle developer can implement RoleMakerBase to design a role maker
for worker or pserver assignment.
"""
def __init__(self):
self._role_maker_name = ""
self._trainer_endpoints = []
self._pserver_endpoints = []
self._role_is_generated = False
def _is_worker(self):
"""
return is_worker() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def _is_server(self):
"""
return is_server() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def _get_local_ip(self):
"""
return get local ip
"""
import socket
self._ip = socket.gethostbyname(socket.gethostname())
return self._ip
def _get_trainer_endpoints(self):
"""
return trainer endpoints
"""
return self._trainer_endpoints
def _get_pserver_endpoints(self):
"""
return pserver endpoints
"""
return self._pserver_endpoints
def _generate_role(self):
"""
generate_role() should be called to identify current process's role
"""
raise NotImplementedError("Please implement this method in child class")
class MPIRoleMaker(RoleMakerBase):
"""
MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
mpi4py will be used if a developer inherits MPIRoleMaker
"""
def __init__(self):
super(MPIRoleMaker, self).__init__()
from mpi4py import MPI
self._comm = MPI.COMM_WORLD
self.MPI = MPI
self._ips = None
def _get_rank(self):
"""
return rank
"""
self._rank = self._comm.Get_rank()
return self._rank
def _get_size(self):
"""
return size
"""
self._size = self._comm.Get_size()
return self._size
def _all_gather(self, obj):
"""
all_gather(obj) will call MPI's allgather function
"""
self._barrier_all()
return self._comm.allgather(obj)
def _worker_gather(self, obj):
"""
worker_gather(obj) will call MPI's allgather function
"""
if self._is_worker():
self._node_type_comm.barrier()
return self._node_type_comm.allgather(obj)
return None
def _barrier_all(self):
"""
barrier_all() will call MPI's barrier_all function
"""
self._comm.barrier()
def _get_ips(self):
"""
collect current distributed job's ip list
"""
if self._ips == None:
self._ips = self._comm.allgather(self._get_local_ip())
return self._ips
def _finalize(self):
"""
finalize the current MPI instance.
"""
pass
class MPISymetricRoleMaker(MPIRoleMaker):
"""
MPISymetricRoleMaker is designed for worker and server assignment
under MPI. Typically, a worker and a server node will be appointed
on each physical node. This role maker can be only used under MPI.
"""
def __init__(self):
super(MPISymetricRoleMaker, self).__init__()
self._node_type = None
self._proc_per_node = 2
def _check_role_generation(self):
if not self._role_is_generated:
sys.stderr.write("generate_role() should be called first")
sys.exit(-1)
return False
return True
def _is_first_worker(self):
"""
return whether current process is the first worker assigned by role maker
"""
if self._check_role_generation():
return self._is_worker() and 0 == self._worker_index()
return False
def _is_worker(self):
"""
return whether current process is worker assigned by role maker
"""
if self._check_role_generation():
return self._node_type == 1
return False
def _is_server(self):
"""
return whether current process is server assigned by role maker
"""
if self._check_role_generation():
return self._node_type == 0
return False
def _worker_num(self):
"""
return the current number of worker
"""
if self._check_role_generation():
if self._is_worker():
return self._get_size() / 2
return 0
def _server_num(self):
"""
return the current number of server
"""
if self._check_role_generation():
if self._is_server():
return self._get_size() / 2
return 0
def _worker_index(self):
"""
return the index of worker
"""
if self._check_role_generation():
return self._rank / self._proc_per_node
return 0
def _server_index(self):
"""
return the index of server
"""
if self._check_role_generation():
return self._rank / self._proc_per_node
return 0
def _barrier_worker(self):
"""
barrier all workers in current distributed job
"""
if self._check_role_generation():
if self._is_worker():
self._node_type_comm.barrier()
def _barrier_server(self):
"""
barrier all servers in current distributed job
"""
if self._check_role_generation():
if self._is_server():
self._node_type_comm.barrier()
def _generate_role(self):
"""
generate currently process's role
"""
if not self._role_is_generated:
# TODO(guru4elephant): only allow to be called once
self._trainer_endpoints = self._get_ips()
self._pserver_endpoints = self._get_ips()
if 0 == self._get_rank() % self._proc_per_node % 2:
self._node_type = 0
else:
self._node_type = 1
self._node_type_comm = self._comm.Split(self._node_type)
self._role_is_generated = True