You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_norm_all.py

211 lines
7.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
def p_norm(x, axis, porder, keepdims=False):
if axis is None: axis = -1
xp = np.power(np.abs(x), porder)
s = np.sum(xp, axis=axis, keepdims=keepdims)
r = np.power(s, 1.0 / porder)
return r
def frobenius_norm(x, axis=None, keepdims=False):
if isinstance(axis, list): axis = tuple(axis)
if axis is None: axis = (-2, -1)
r = np.linalg.norm(x, ord='fro', axis=axis, keepdims=keepdims)
return r
class TestFrobeniusNormOp(OpTest):
def setUp(self):
self.op_type = "frobenius_norm"
self.init_test_case()
x = (np.random.random(self.shape) + 1.0).astype(self.dtype)
norm = frobenius_norm(x, self.axis, self.keepdim)
self.reduce_all = (len(self.axis) == len(self.shape))
self.inputs = {'X': x}
self.attrs = {
'dim': list(self.axis),
'keep_dim': self.keepdim,
'reduce_all': self.reduce_all
}
self.outputs = {'Out': norm}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def init_test_case(self):
self.shape = [2, 3, 4, 5]
self.axis = (1, 2)
self.keepdim = False
self.dtype = "float64"
class TestFrobeniusNormOp2(TestFrobeniusNormOp):
def init_test_case(self):
self.shape = [5, 5, 5]
self.axis = (0, 1)
self.keepdim = True
self.dtype = "float32"
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestPnormOp(OpTest):
def setUp(self):
self.op_type = "p_norm"
self.init_test_case()
x = (np.random.random(self.shape) + 0.5).astype(self.dtype)
norm = p_norm(x, self.axis, self.porder, self.keepdim)
self.inputs = {'X': x}
self.attrs = {
'epsilon': self.epsilon,
'axis': self.axis,
'keepdim': self.keepdim,
'porder': float(self.porder)
}
self.outputs = {'Out': norm}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def init_test_case(self):
self.shape = [2, 3, 4, 5]
self.axis = 1
self.epsilon = 1e-12
self.porder = 2.0
self.keepdim = False
self.dtype = "float64"
class TestPnormOp2(TestPnormOp):
def init_test_case(self):
self.shape = [3, 20, 3]
self.axis = 2
self.epsilon = 1e-12
self.porder = 2.0
self.keepdim = True
self.dtype = "float32"
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def run_out(self, p, axis, shape_x, shape_y, dtype):
with fluid.program_guard(fluid.Program()):
data1 = fluid.data(name="X", shape=shape_x, dtype=dtype)
data2 = fluid.data(name="Y", shape=shape_y, dtype=dtype)
out = paddle.norm(input=data1, p=p, axis=axis, out=data2)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
result = exe.run(feed={"X": np.random.rand(*shape_x).astype(dtype)},
fetch_list=[data2, out])
self.assertEqual((result[0] == result[1]).all(), True)
def run_fro(self, p, axis, shape_x, dtype):
with fluid.program_guard(fluid.Program()):
data = fluid.data(name="X", shape=shape_x, dtype=dtype)
out = paddle.norm(input=data, p=p, axis=axis)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
expected_result = frobenius_norm(np_input, axis=axis)
result, = exe.run(feed={"X": np_input}, fetch_list=[out])
self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)
def run_pnorm(self, p, axis, shape_x, dtype):
with fluid.program_guard(fluid.Program()):
data = fluid.data(name="X", shape=shape_x, dtype=dtype)
out = paddle.norm(input=data, p=p, axis=axis)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
expected_result = p_norm(np_input, porder=p, axis=axis).astype(dtype)
result, = exe.run(feed={"X": np_input}, fetch_list=[out])
self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)
class API_NormTest(unittest.TestCase):
def test_output_result(self):
run_out(self, p=2, axis=1, shape_x=[3, 4], shape_y=[3], dtype="float32")
run_out(
self,
p='fro',
axis=None,
shape_x=[3, 4],
shape_y=[1],
dtype="float32")
def test_basic(self):
run_fro(self, p='fro', axis=None, shape_x=[3, 3, 4], dtype="float32")
run_fro(self, p='fro', axis=[0, 1], shape_x=[3, 3, 4], dtype="float64")
run_pnorm(self, p=2, axis=None, shape_x=[3, 4], dtype="float32")
run_pnorm(self, p=2, axis=1, shape_x=[3, 4], dtype="float64")
def test_name(self):
with fluid.program_guard(fluid.Program()):
x = fluid.data(name="x", shape=[10, 10], dtype="float32")
y_1 = paddle.norm(x, p='fro', name='frobenius_name')
y_2 = paddle.norm(x, p=2, name='pnorm_name')
self.assertEqual(('frobenius_name' in y_1.name), True)
self.assertEqual(('pnorm_name' in y_2.name), True)
def test_errors(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
def err_dtype(p, shape_x, xdtype, out=None):
data = fluid.data(shape=shape_x, dtype=xdtype)
paddle.norm(data, p=p, out=out)
self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "int64")
out = fluid.data(name="out", shape=[1], dtype="int64")
self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "float64",
out)
self.assertRaises(TypeError, err_dtype, 2, [10], "int64")
self.assertRaises(TypeError, err_dtype, 2, [10], "float64", out)
data = fluid.data(name="data_2d", shape=[2, 2], dtype="float64")
self.assertRaises(ValueError, paddle.norm, data, p="unsupport norm")
self.assertRaises(ValueError, paddle.norm, data, p=[1])
self.assertRaises(ValueError, paddle.norm, data, p=[1], axis=-1)
self.assertRaises(
ValueError, paddle.norm, data, p='unspport', axis=[-2, -1])
data = fluid.data(name="data_3d", shape=[2, 2, 2], dtype="float64")
self.assertRaises(
ValueError, paddle.norm, data, p='unspport', axis=[-2, -1])
self.assertRaises(
ValueError, paddle.norm, data, p='unspport', axis=[-3, -2, -1])
if __name__ == '__main__':
unittest.main()