You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							179 lines
						
					
					
						
							8.0 KiB
						
					
					
				
			
		
		
	
	
							179 lines
						
					
					
						
							8.0 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/positive_negative_pair_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class PositiveNegativePairOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasInput("Score"),
 | 
						|
        "Input(Score) of PositiveNegativePairOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasInput("Label"),
 | 
						|
        "Input(Label) of PositiveNegativePairOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasInput("QueryID"),
 | 
						|
        "Input(QueryID) of PositiveNegativePairOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasOutput("PositivePair"),
 | 
						|
        "Output(PositivePair) of PositiveNegativePairOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasOutput("NegativePair"),
 | 
						|
        "Output(NegativePair) of PositiveNegativePairOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasOutput("NeutralPair"),
 | 
						|
        "Output(NeutralPair) of PositiveNegativePairOp should not be null.");
 | 
						|
    auto scalar_dim = framework::make_ddim({1});
 | 
						|
    if (ctx->HasInput("AccumulatePositivePair") ||
 | 
						|
        ctx->HasInput("AccumulateNegativePair") ||
 | 
						|
        ctx->HasInput("AccumulateNeutralPair")) {
 | 
						|
      PADDLE_ENFORCE(ctx->HasInput("AccumulatePositivePair") &&
 | 
						|
                         ctx->HasInput("AccumulateNegativePair") &&
 | 
						|
                         ctx->HasInput("AccumulateNeutralPair"),
 | 
						|
                     "All optional inputs(AccumulatePositivePair, "
 | 
						|
                     "AccumulateNegativePair, AccumulateNeutralPair) of "
 | 
						|
                     "PositiveNegativePairOp are required if one of them is "
 | 
						|
                     "specified.");
 | 
						|
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulatePositivePair"), scalar_dim,
 | 
						|
                        "Shape of AccumulatePositivePair should be {1}.");
 | 
						|
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNegativePair"), scalar_dim,
 | 
						|
                        "Shape of AccumulateNegativePair should be {1}.");
 | 
						|
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNeutralPair"), scalar_dim,
 | 
						|
                        "Shape of AccumulateNeutralPair should be {1}.");
 | 
						|
    }
 | 
						|
 | 
						|
    auto score_dim = ctx->GetInputDim("Score");
 | 
						|
    auto label_dim = ctx->GetInputDim("Label");
 | 
						|
    auto query_dim = ctx->GetInputDim("QueryID");
 | 
						|
    PADDLE_ENFORCE_EQ(score_dim.size(), 2, "Score should be a 2-D tensor.");
 | 
						|
    PADDLE_ENFORCE_EQ(label_dim.size(), 2, "Label should be a 2-D tensor.");
 | 
						|
    PADDLE_ENFORCE_EQ(
 | 
						|
        label_dim[0], score_dim[0],
 | 
						|
        "Tensor Score and Label should have the same height (batch size).");
 | 
						|
    PADDLE_ENFORCE_EQ(label_dim[1], 1,
 | 
						|
                      "The width of Label should be 1, i.e. each item should "
 | 
						|
                      "have a scalar label.");
 | 
						|
    PADDLE_ENFORCE(query_dim == label_dim,
 | 
						|
                   "QueryID should have the same shape as Label.");
 | 
						|
    if (ctx->HasInput("Weight")) {
 | 
						|
      PADDLE_ENFORCE(ctx->GetInputDim("Weight") == label_dim,
 | 
						|
                     "Weight should have the same shape as Label.");
 | 
						|
    }
 | 
						|
    int column = ctx->Attrs().Get<int>("column");
 | 
						|
    auto depth = score_dim[1];
 | 
						|
    PADDLE_ENFORCE(column < depth && column >= -depth,
 | 
						|
                   "Attribute column should be in the range of [-%l, %l)",
 | 
						|
                   depth, depth);
 | 
						|
 | 
						|
    ctx->SetOutputDim("PositivePair", scalar_dim);
 | 
						|
    ctx->SetOutputDim("NegativePair", scalar_dim);
 | 
						|
    ctx->SetOutputDim("NeutralPair", scalar_dim);
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext &ctx) const override {
 | 
						|
    return framework::OpKernelType(
 | 
						|
        framework::ToDataType(ctx.Input<Tensor>("Score")->type()),
 | 
						|
        ctx.device_context());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("Score",
 | 
						|
             "(Tensor, float) Model Score on an item (with "
 | 
						|
             "respect to QueryID). It's a 2-D tensor with shape [batch_size, "
 | 
						|
             "depth], where the column specified by the attribute \"column\" "
 | 
						|
             "is used as item score.");
 | 
						|
    AddInput("Label",
 | 
						|
             "(Tensor, float) Label of an item (with repsect to "
 | 
						|
             "QueryId). It's a 2-D tensor with shape [batch_size, 1].");
 | 
						|
    AddInput("QueryID",
 | 
						|
             "(Tensor, int64) Query ID that indicates the context. Its shape "
 | 
						|
             "should be the same as Label.");
 | 
						|
    AddInput(
 | 
						|
        "AccumulatePositivePair",
 | 
						|
        "(float) Optional. The accumulated number of positive pairs over a "
 | 
						|
        "stream of data. If provided, the output PositivePair will be "
 | 
						|
        "initialized with this number rather than 0. it won't be modified "
 | 
						|
        "in place.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput(
 | 
						|
        "AccumulateNegativePair",
 | 
						|
        "(float) Optional. The accumulated number of negative pairs over a "
 | 
						|
        "stream of data. If provided, the output NegativePair will be "
 | 
						|
        "initialized with this number rather than 0. it won't be modified "
 | 
						|
        "in place.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput("AccumulateNeutralPair",
 | 
						|
             "(float) Optional. The accumulated number of neutral pairs over a "
 | 
						|
             "stream of data. If provided, the output NeutralPair will be "
 | 
						|
             "initialized with this number rather than 0. it won't be modified "
 | 
						|
             "in place.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput("Weight",
 | 
						|
             "(float) Optional. Weight of current item. If specified, its "
 | 
						|
             "shape should be the same as Label, and the meaning of the output "
 | 
						|
             "changes from numbers of pairs to the total sum of pairs' "
 | 
						|
             "weights. Weight of a pair of items is the average of their "
 | 
						|
             "weights.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddOutput("PositivePair",
 | 
						|
              "(float) Number of positive pairs, i.e. the pairs of "
 | 
						|
              "items that are ranked correctly.");
 | 
						|
    AddOutput("NegativePair",
 | 
						|
              "(float) Number of negative pairs, i.e. the pairs of "
 | 
						|
              "items that are ranked incorrectly.");
 | 
						|
    AddOutput("NeutralPair",
 | 
						|
              "(float) Number of neutral pairs, i.e. the pairs of items "
 | 
						|
              "that have the same score.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddAttr<int>(
 | 
						|
        "column",
 | 
						|
        "(int, default -1) The column position of Score used to rank items in "
 | 
						|
        "descending order. It must be in the range of [-rank(Score), "
 | 
						|
        "rank(Score)). "
 | 
						|
        "If `dim < 0`, the dim to reduce is `rank + dim`. "
 | 
						|
        "Noting that reducing on the first dim will make the LoD info lost.")
 | 
						|
        .SetDefault(0);
 | 
						|
    AddComment(R"DOC(
 | 
						|
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model's
 | 
						|
performance.
 | 
						|
 | 
						|
Within some context, e.g. the "query", a LTR model generates scores for a list
 | 
						|
of items, which gives a partial order of the items. PositiveNegativePairOp
 | 
						|
takes a list of reference rank order (Input("Label")) and the model generated
 | 
						|
scores (Input(Score)) as inputs and counts the pairs that ranked correctly
 | 
						|
and incorrectly.
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair,
 | 
						|
                             ops::PositiveNegativePairOp,
 | 
						|
                             ops::PositiveNegativePairOpMaker);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    positive_negative_pair,
 | 
						|
    ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, float>,
 | 
						|
    ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, double>);
 |