You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/demo/image_classification/data/process_cifar.py

77 lines
2.7 KiB

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import sys
import os
import PIL.Image as Image
"""
Usage: python process_cifar input_dir output_dir
"""
def mkdir_not_exist(path):
"""
Make dir if the path does not exist.
path: the path to be created.
"""
if not os.path.exists(path):
os.mkdir(path)
def create_dir_structure(output_dir):
"""
Create the directory structure for the directory.
output_dir: the direcotry structure path.
"""
mkdir_not_exist(os.path.join(output_dir))
mkdir_not_exist(os.path.join(output_dir, "train"))
mkdir_not_exist(os.path.join(output_dir, "test"))
def convert_batch(batch_path, label_set, label_map,
output_dir, data_split):
"""
Convert CIFAR batch to the structure of Paddle format.
batch_path: the batch to be converted.
label_set: the set of labels.
output_dir: the output path.
data_split: whether it is training or testing data.
"""
data = np.load(batch_path)
for data, label, filename in zip(data['data'], data['labels'],
data['filenames']):
data = data.reshape((3, 32, 32))
data = np.transpose(data, (1, 2, 0))
label = label_map[label]
output_dir_this = os.path.join(output_dir, data_split, str(label))
output_filename = os.path.join(output_dir_this, filename)
if not label in label_set:
label_set[label] = True
mkdir_not_exist(output_dir_this)
Image.fromarray(data).save(output_filename)
if __name__ == '__main__':
input_dir = sys.argv[1]
output_dir = sys.argv[2]
num_batch = 5
create_dir_structure(output_dir)
label_map = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer",
5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
labels = {}
for i in range(1, num_batch + 1):
convert_batch(os.path.join(input_dir, "data_batch_%d" % i), labels,
label_map, output_dir, "train")
convert_batch(os.path.join(input_dir, "test_batch"), {},
label_map, output_dir, "test")