You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_precision_recall_op.py

188 lines
6.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def calc_precision(tp_count, fp_count):
if tp_count > 0.0 or fp_count > 0.0:
return tp_count / (tp_count + fp_count)
return 1.0
def calc_recall(tp_count, fn_count):
if tp_count > 0.0 or fn_count > 0.0:
return tp_count / (tp_count + fn_count)
return 1.0
def calc_f1_score(precision, recall):
if precision > 0.0 or recall > 0.0:
return 2 * precision * recall / (precision + recall)
return 0.0
def get_states(idxs, labels, cls_num, weights=None):
ins_num = idxs.shape[0]
# TP FP TN FN
states = np.zeros((cls_num, 4)).astype('float32')
for i in xrange(ins_num):
w = weights[i] if weights is not None else 1.0
idx = idxs[i][0]
label = labels[i][0]
if idx == label:
states[idx][0] += w
for j in xrange(cls_num):
states[j][2] += w
states[idx][2] -= w
else:
states[label][3] += w
states[idx][1] += w
for j in xrange(cls_num):
states[j][2] += w
states[label][2] -= w
states[idx][2] -= w
return states
def compute_metrics(states, cls_num):
total_tp_count = 0.0
total_fp_count = 0.0
total_fn_count = 0.0
macro_avg_precision = 0.0
macro_avg_recall = 0.0
for i in xrange(cls_num):
total_tp_count += states[i][0]
total_fp_count += states[i][1]
total_fn_count += states[i][3]
macro_avg_precision += calc_precision(states[i][0], states[i][1])
macro_avg_recall += calc_recall(states[i][0], states[i][3])
metrics = []
macro_avg_precision /= cls_num
macro_avg_recall /= cls_num
metrics.append(macro_avg_precision)
metrics.append(macro_avg_recall)
metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall))
micro_avg_precision = calc_precision(total_tp_count, total_fp_count)
metrics.append(micro_avg_precision)
micro_avg_recall = calc_recall(total_tp_count, total_fn_count)
metrics.append(micro_avg_recall)
metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall))
return np.array(metrics).astype('float32')
class TestPrecisionRecallOp_0(OpTest):
def setUp(self):
self.op_type = "precision_recall"
ins_num = 64
cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
states = get_states(idxs, labels, cls_num)
metrics = compute_metrics(states, cls_num)
self.attrs = {'class_number': cls_num}
self.inputs = {'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels}
self.outputs = {
'BatchMetrics': metrics,
'AccumMetrics': metrics,
'AccumStatesInfo': states
}
def test_check_output(self):
self.check_output()
class TestPrecisionRecallOp_1(OpTest):
def setUp(self):
self.op_type = "precision_recall"
ins_num = 64
cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
states = get_states(idxs, labels, cls_num, weights)
metrics = compute_metrics(states, cls_num)
self.attrs = {'class_number': cls_num}
self.inputs = {
'MaxProbs': max_probs,
'Indices': idxs,
'Labels': labels,
'Weights': weights
}
self.outputs = {
'BatchMetrics': metrics,
'AccumMetrics': metrics,
'AccumStatesInfo': states
}
def test_check_output(self):
self.check_output()
class TestPrecisionRecallOp_2(OpTest):
def setUp(self):
self.op_type = "precision_recall"
ins_num = 64
cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
states = np.random.randint(0, 30, (cls_num, 4)).astype('float32')
accum_states = get_states(idxs, labels, cls_num, weights)
batch_metrics = compute_metrics(accum_states, cls_num)
accum_states += states
accum_metrics = compute_metrics(accum_states, cls_num)
self.attrs = {'class_number': cls_num}
self.inputs = {
'MaxProbs': max_probs,
'Indices': idxs,
'Labels': labels,
'Weights': weights,
'StatesInfo': states
}
self.outputs = {
'BatchMetrics': batch_metrics,
'AccumMetrics': accum_metrics,
'AccumStatesInfo': accum_states
}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()