You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							188 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
	
	
							188 lines
						
					
					
						
							6.0 KiB
						
					
					
				| #   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import unittest
 | |
| import numpy as np
 | |
| from op_test import OpTest
 | |
| 
 | |
| 
 | |
| def calc_precision(tp_count, fp_count):
 | |
|     if tp_count > 0.0 or fp_count > 0.0:
 | |
|         return tp_count / (tp_count + fp_count)
 | |
|     return 1.0
 | |
| 
 | |
| 
 | |
| def calc_recall(tp_count, fn_count):
 | |
|     if tp_count > 0.0 or fn_count > 0.0:
 | |
|         return tp_count / (tp_count + fn_count)
 | |
|     return 1.0
 | |
| 
 | |
| 
 | |
| def calc_f1_score(precision, recall):
 | |
|     if precision > 0.0 or recall > 0.0:
 | |
|         return 2 * precision * recall / (precision + recall)
 | |
|     return 0.0
 | |
| 
 | |
| 
 | |
| def get_states(idxs, labels, cls_num, weights=None):
 | |
|     ins_num = idxs.shape[0]
 | |
|     # TP FP TN FN
 | |
|     states = np.zeros((cls_num, 4)).astype('float32')
 | |
|     for i in xrange(ins_num):
 | |
|         w = weights[i] if weights is not None else 1.0
 | |
|         idx = idxs[i][0]
 | |
|         label = labels[i][0]
 | |
|         if idx == label:
 | |
|             states[idx][0] += w
 | |
|             for j in xrange(cls_num):
 | |
|                 states[j][2] += w
 | |
|             states[idx][2] -= w
 | |
|         else:
 | |
|             states[label][3] += w
 | |
|             states[idx][1] += w
 | |
|             for j in xrange(cls_num):
 | |
|                 states[j][2] += w
 | |
|             states[label][2] -= w
 | |
|             states[idx][2] -= w
 | |
|     return states
 | |
| 
 | |
| 
 | |
| def compute_metrics(states, cls_num):
 | |
|     total_tp_count = 0.0
 | |
|     total_fp_count = 0.0
 | |
|     total_fn_count = 0.0
 | |
|     macro_avg_precision = 0.0
 | |
|     macro_avg_recall = 0.0
 | |
|     for i in xrange(cls_num):
 | |
|         total_tp_count += states[i][0]
 | |
|         total_fp_count += states[i][1]
 | |
|         total_fn_count += states[i][3]
 | |
|         macro_avg_precision += calc_precision(states[i][0], states[i][1])
 | |
|         macro_avg_recall += calc_recall(states[i][0], states[i][3])
 | |
|     metrics = []
 | |
|     macro_avg_precision /= cls_num
 | |
|     macro_avg_recall /= cls_num
 | |
|     metrics.append(macro_avg_precision)
 | |
|     metrics.append(macro_avg_recall)
 | |
|     metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall))
 | |
|     micro_avg_precision = calc_precision(total_tp_count, total_fp_count)
 | |
|     metrics.append(micro_avg_precision)
 | |
|     micro_avg_recall = calc_recall(total_tp_count, total_fn_count)
 | |
|     metrics.append(micro_avg_recall)
 | |
|     metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall))
 | |
|     return np.array(metrics).astype('float32')
 | |
| 
 | |
| 
 | |
| class TestPrecisionRecallOp_0(OpTest):
 | |
|     def setUp(self):
 | |
|         self.op_type = "precision_recall"
 | |
|         ins_num = 64
 | |
|         cls_num = 10
 | |
|         max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
 | |
|         idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
 | |
|             (ins_num, 1)).astype('int32')
 | |
|         labels = np.random.choice(xrange(cls_num), ins_num).reshape(
 | |
|             (ins_num, 1)).astype('int32')
 | |
|         states = get_states(idxs, labels, cls_num)
 | |
|         metrics = compute_metrics(states, cls_num)
 | |
| 
 | |
|         self.attrs = {'class_number': cls_num}
 | |
| 
 | |
|         self.inputs = {'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels}
 | |
| 
 | |
|         self.outputs = {
 | |
|             'BatchMetrics': metrics,
 | |
|             'AccumMetrics': metrics,
 | |
|             'AccumStatesInfo': states
 | |
|         }
 | |
| 
 | |
|     def test_check_output(self):
 | |
|         self.check_output()
 | |
| 
 | |
| 
 | |
| class TestPrecisionRecallOp_1(OpTest):
 | |
|     def setUp(self):
 | |
|         self.op_type = "precision_recall"
 | |
|         ins_num = 64
 | |
|         cls_num = 10
 | |
|         max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
 | |
|         idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
 | |
|             (ins_num, 1)).astype('int32')
 | |
|         weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
 | |
|         labels = np.random.choice(xrange(cls_num), ins_num).reshape(
 | |
|             (ins_num, 1)).astype('int32')
 | |
| 
 | |
|         states = get_states(idxs, labels, cls_num, weights)
 | |
|         metrics = compute_metrics(states, cls_num)
 | |
| 
 | |
|         self.attrs = {'class_number': cls_num}
 | |
| 
 | |
|         self.inputs = {
 | |
|             'MaxProbs': max_probs,
 | |
|             'Indices': idxs,
 | |
|             'Labels': labels,
 | |
|             'Weights': weights
 | |
|         }
 | |
| 
 | |
|         self.outputs = {
 | |
|             'BatchMetrics': metrics,
 | |
|             'AccumMetrics': metrics,
 | |
|             'AccumStatesInfo': states
 | |
|         }
 | |
| 
 | |
|     def test_check_output(self):
 | |
|         self.check_output()
 | |
| 
 | |
| 
 | |
| class TestPrecisionRecallOp_2(OpTest):
 | |
|     def setUp(self):
 | |
|         self.op_type = "precision_recall"
 | |
|         ins_num = 64
 | |
|         cls_num = 10
 | |
|         max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
 | |
|         idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
 | |
|             (ins_num, 1)).astype('int32')
 | |
|         weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
 | |
|         labels = np.random.choice(xrange(cls_num), ins_num).reshape(
 | |
|             (ins_num, 1)).astype('int32')
 | |
|         states = np.random.randint(0, 30, (cls_num, 4)).astype('float32')
 | |
| 
 | |
|         accum_states = get_states(idxs, labels, cls_num, weights)
 | |
|         batch_metrics = compute_metrics(accum_states, cls_num)
 | |
|         accum_states += states
 | |
|         accum_metrics = compute_metrics(accum_states, cls_num)
 | |
| 
 | |
|         self.attrs = {'class_number': cls_num}
 | |
| 
 | |
|         self.inputs = {
 | |
|             'MaxProbs': max_probs,
 | |
|             'Indices': idxs,
 | |
|             'Labels': labels,
 | |
|             'Weights': weights,
 | |
|             'StatesInfo': states
 | |
|         }
 | |
| 
 | |
|         self.outputs = {
 | |
|             'BatchMetrics': batch_metrics,
 | |
|             'AccumMetrics': accum_metrics,
 | |
|             'AccumStatesInfo': accum_states
 | |
|         }
 | |
| 
 | |
|     def test_check_output(self):
 | |
|         self.check_output()
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     unittest.main()
 |