You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
6.0 KiB
188 lines
6.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def calc_precision(tp_count, fp_count):
|
|
if tp_count > 0.0 or fp_count > 0.0:
|
|
return tp_count / (tp_count + fp_count)
|
|
return 1.0
|
|
|
|
|
|
def calc_recall(tp_count, fn_count):
|
|
if tp_count > 0.0 or fn_count > 0.0:
|
|
return tp_count / (tp_count + fn_count)
|
|
return 1.0
|
|
|
|
|
|
def calc_f1_score(precision, recall):
|
|
if precision > 0.0 or recall > 0.0:
|
|
return 2 * precision * recall / (precision + recall)
|
|
return 0.0
|
|
|
|
|
|
def get_states(idxs, labels, cls_num, weights=None):
|
|
ins_num = idxs.shape[0]
|
|
# TP FP TN FN
|
|
states = np.zeros((cls_num, 4)).astype('float32')
|
|
for i in xrange(ins_num):
|
|
w = weights[i] if weights is not None else 1.0
|
|
idx = idxs[i][0]
|
|
label = labels[i][0]
|
|
if idx == label:
|
|
states[idx][0] += w
|
|
for j in xrange(cls_num):
|
|
states[j][2] += w
|
|
states[idx][2] -= w
|
|
else:
|
|
states[label][3] += w
|
|
states[idx][1] += w
|
|
for j in xrange(cls_num):
|
|
states[j][2] += w
|
|
states[label][2] -= w
|
|
states[idx][2] -= w
|
|
return states
|
|
|
|
|
|
def compute_metrics(states, cls_num):
|
|
total_tp_count = 0.0
|
|
total_fp_count = 0.0
|
|
total_fn_count = 0.0
|
|
macro_avg_precision = 0.0
|
|
macro_avg_recall = 0.0
|
|
for i in xrange(cls_num):
|
|
total_tp_count += states[i][0]
|
|
total_fp_count += states[i][1]
|
|
total_fn_count += states[i][3]
|
|
macro_avg_precision += calc_precision(states[i][0], states[i][1])
|
|
macro_avg_recall += calc_recall(states[i][0], states[i][3])
|
|
metrics = []
|
|
macro_avg_precision /= cls_num
|
|
macro_avg_recall /= cls_num
|
|
metrics.append(macro_avg_precision)
|
|
metrics.append(macro_avg_recall)
|
|
metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall))
|
|
micro_avg_precision = calc_precision(total_tp_count, total_fp_count)
|
|
metrics.append(micro_avg_precision)
|
|
micro_avg_recall = calc_recall(total_tp_count, total_fn_count)
|
|
metrics.append(micro_avg_recall)
|
|
metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall))
|
|
return np.array(metrics).astype('float32')
|
|
|
|
|
|
class TestPrecisionRecallOp_0(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "precision_recall"
|
|
ins_num = 64
|
|
cls_num = 10
|
|
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
|
|
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
|
|
(ins_num, 1)).astype('int32')
|
|
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
|
|
(ins_num, 1)).astype('int32')
|
|
states = get_states(idxs, labels, cls_num)
|
|
metrics = compute_metrics(states, cls_num)
|
|
|
|
self.attrs = {'class_number': cls_num}
|
|
|
|
self.inputs = {'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels}
|
|
|
|
self.outputs = {
|
|
'BatchMetrics': metrics,
|
|
'AccumMetrics': metrics,
|
|
'AccumStatesInfo': states
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestPrecisionRecallOp_1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "precision_recall"
|
|
ins_num = 64
|
|
cls_num = 10
|
|
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
|
|
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
|
|
(ins_num, 1)).astype('int32')
|
|
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
|
|
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
|
|
(ins_num, 1)).astype('int32')
|
|
|
|
states = get_states(idxs, labels, cls_num, weights)
|
|
metrics = compute_metrics(states, cls_num)
|
|
|
|
self.attrs = {'class_number': cls_num}
|
|
|
|
self.inputs = {
|
|
'MaxProbs': max_probs,
|
|
'Indices': idxs,
|
|
'Labels': labels,
|
|
'Weights': weights
|
|
}
|
|
|
|
self.outputs = {
|
|
'BatchMetrics': metrics,
|
|
'AccumMetrics': metrics,
|
|
'AccumStatesInfo': states
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestPrecisionRecallOp_2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "precision_recall"
|
|
ins_num = 64
|
|
cls_num = 10
|
|
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
|
|
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
|
|
(ins_num, 1)).astype('int32')
|
|
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
|
|
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
|
|
(ins_num, 1)).astype('int32')
|
|
states = np.random.randint(0, 30, (cls_num, 4)).astype('float32')
|
|
|
|
accum_states = get_states(idxs, labels, cls_num, weights)
|
|
batch_metrics = compute_metrics(accum_states, cls_num)
|
|
accum_states += states
|
|
accum_metrics = compute_metrics(accum_states, cls_num)
|
|
|
|
self.attrs = {'class_number': cls_num}
|
|
|
|
self.inputs = {
|
|
'MaxProbs': max_probs,
|
|
'Indices': idxs,
|
|
'Labels': labels,
|
|
'Weights': weights,
|
|
'StatesInfo': states
|
|
}
|
|
|
|
self.outputs = {
|
|
'BatchMetrics': batch_metrics,
|
|
'AccumMetrics': accum_metrics,
|
|
'AccumStatesInfo': accum_states
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|