You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
7.3 KiB
185 lines
7.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// This fused conv follows the equation:
|
|
// y = act ( alpha1 * conv(x) + alpha2 * z + bias ).
|
|
// here, y is Output,
|
|
// x is Input,
|
|
// z is ResidualData,
|
|
// bias is Bias
|
|
// When `split_channels` is set, y will be split into multiple outputs,
|
|
// each output has split_channels[i] number of channels.
|
|
class Conv2DFusionOpMaker : public Conv2DOpMaker {
|
|
protected:
|
|
void Apply() override {
|
|
AddAttr<std::string>(
|
|
"activation",
|
|
"The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
|
|
"'relux' , 'tanh', 'band_pass'")
|
|
.SetDefault("relu");
|
|
AddAttr<std::vector<int>>(
|
|
"split_channels",
|
|
"When `split_channels` are set, there will be multiple outputs, the "
|
|
"output size is equal to the number of `split_channels`.")
|
|
.SetDefault({});
|
|
AddOutput("Outputs",
|
|
"This Outputs is used when setting `split_channels`."
|
|
"Usually used to fuse conv with same input and same filter size, "
|
|
"padding, stride, dilation size.")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddInput("AlgoCache",
|
|
"The cache of convolution algorithm, a RAW type variable.")
|
|
.AsDispensable();
|
|
AddAttr<int>(
|
|
"search_times",
|
|
"The number of exhaustive search times for convolution algorithm.")
|
|
.SetDefault(-1);
|
|
}
|
|
};
|
|
|
|
class Conv2DFusionOp : public operators::ConvOp {
|
|
public:
|
|
using operators::ConvOp::ConvOp;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
|
|
"Input(Input) of ConvOp should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
|
|
"Input(Filter) of ConvOp should not be null.");
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto filter_dims = ctx->GetInputDim("Filter");
|
|
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
std::vector<int> dilations =
|
|
ctx->Attrs().Get<std::vector<int>>("dilations");
|
|
std::string padding_algorithm =
|
|
ctx->Attrs().Get<std::string>("padding_algorithm");
|
|
int groups = ctx->Attrs().Get<int>("groups");
|
|
|
|
framework::DDim in_data_dims;
|
|
in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_dims.size() == 4 || in_dims.size() == 5, true,
|
|
"ShapeError: Conv_fusion input should be 4-D or 5-D tensor. But "
|
|
"received: %u-D Tensor,"
|
|
"the shape of Conv_fusion input is [%s]",
|
|
in_dims.size(), in_dims);
|
|
|
|
PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
|
|
"ShapeError: Conv_fusion input dimension and filter "
|
|
"dimension should be the "
|
|
"equal."
|
|
"But received: the shape of Conv_fusion input is [%s], "
|
|
"input dimension of Conv_fusion "
|
|
"input is [%d],"
|
|
"the shape of filter is [%s], the filter dimension of "
|
|
"Conv_fusion is [%d]",
|
|
in_dims, in_dims.size(), filter_dims, filter_dims.size());
|
|
|
|
int in_sub_stride_size = in_dims.size() - strides.size();
|
|
PADDLE_ENFORCE_EQ(
|
|
in_dims.size() - strides.size() == 2U, true,
|
|
"ShapeError: the dimension of input minus the dimension of "
|
|
"stride must be euqal to 2."
|
|
"But received: the dimension of input minus the dimension "
|
|
"of stride is [%d], the"
|
|
"input dimension of Conv_fusion is [%d], the shape of Conv_fusion "
|
|
"input "
|
|
"is [%s], the stride"
|
|
"dimension of Conv_fusion is [%d]",
|
|
in_sub_stride_size, in_dims.size(), in_dims, strides.size());
|
|
|
|
const auto input_channels = in_dims[1];
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
input_channels, filter_dims[1] * groups,
|
|
"ShapeError: The number of input channels should be equal to filter "
|
|
"channels * groups. But received: the input channels is [%d], the shape"
|
|
"of input is [%s], the filter channel is [%d], the shape of filter is "
|
|
"[%s],"
|
|
"the groups is [%d]",
|
|
in_dims[1], in_dims, filter_dims[1], filter_dims, groups);
|
|
PADDLE_ENFORCE_EQ(
|
|
filter_dims[0] % groups, 0,
|
|
"ShapeError: The number of output channels should be divided by groups."
|
|
"But received: the output channels is [%d], the shape of filter is [%s]"
|
|
"(the first dimension of filter is output channel), the groups is [%d]",
|
|
filter_dims[0], filter_dims, groups);
|
|
|
|
framework::DDim filter_data_dims =
|
|
framework::slice_ddim(filter_dims, 2, filter_dims.size());
|
|
std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
|
|
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
|
|
in_data_dims, strides, ksize);
|
|
|
|
std::vector<int64_t> output_shape({in_dims[0]});
|
|
output_shape.push_back(filter_dims[0]);
|
|
|
|
for (int i = 0; i < in_data_dims.size(); ++i) {
|
|
if ((!ctx->IsRuntime()) &&
|
|
(in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
|
|
output_shape.push_back(-1);
|
|
} else {
|
|
output_shape.push_back(
|
|
ConvOutputSize(in_data_dims[i], filter_dims[i + 2], dilations[i],
|
|
paddings[2 * i], paddings[2 * i + 1], strides[i]));
|
|
}
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
|
|
"Output(Output) of ConvOp should not be null.");
|
|
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
|
|
|
|
std::vector<int> channels =
|
|
ctx->Attrs().Get<std::vector<int>>("split_channels");
|
|
if (channels.size()) {
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutputs("Outputs"), true,
|
|
"Output(Outputs) of ConvOp should not be null.");
|
|
std::vector<framework::DDim> oshapes;
|
|
oshapes.reserve(channels.size());
|
|
for (size_t i = 0; i < channels.size(); ++i) {
|
|
oshapes.push_back(
|
|
{output_shape[0], channels[i], output_shape[2], output_shape[3]});
|
|
}
|
|
ctx->SetOutputsDim("Outputs", oshapes);
|
|
}
|
|
}
|
|
};
|
|
|
|
// TODO(qingqing): add gradient operator for conv2d_fusion
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
conv2d_fusion, ops::Conv2DFusionOp, ops::Conv2DFusionOpMaker,
|
|
ops::ConvOpInferVarType,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|