You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/demo/mnist/api_train.py

87 lines
2.7 KiB

import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter
import paddle.trainer.PyDataProvider2 as dp
import paddle.trainer.config_parser
import numpy as np
from mnist_util import read_from_mnist
def init_parameter(network):
assert isinstance(network, api.GradientMachine)
for each_param in network.getParameters():
assert isinstance(each_param, api.Parameter)
array = each_param.getBuf(api.PARAMETER_VALUE).toNumpyArrayInplace()
assert isinstance(array, np.ndarray)
for i in xrange(len(array)):
array[i] = np.random.uniform(-1.0, 1.0)
def generator_to_batch(generator, batch_size):
ret_val = list()
for each_item in generator:
ret_val.append(each_item)
if len(ret_val) == batch_size:
yield ret_val
ret_val = list()
if len(ret_val) != 0:
yield ret_val
def input_order_converter(generator):
for each_item in generator:
yield each_item['pixel'], each_item['label']
def main():
api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores
config = paddle.trainer.config_parser.parse_config(
'simple_mnist_network.py', '')
opt_config = api.OptimizationConfig.createFromProto(config.opt_config)
_temp_optimizer_ = api.ParameterOptimizer.create(opt_config)
enable_types = _temp_optimizer_.getParameterTypes()
m = api.GradientMachine.createFromConfigProto(
config.model_config, api.CREATE_MODE_NORMAL, enable_types)
assert isinstance(m, api.GradientMachine)
init_parameter(network=m)
updater = api.ParameterUpdater.createLocalUpdater(opt_config)
assert isinstance(updater, api.ParameterUpdater)
updater.init(m)
converter = DataProviderConverter(
input_types=[dp.dense_vector(784), dp.integer_value(10)])
train_file = './data/raw_data/train'
m.start()
for _ in xrange(100):
updater.startPass()
outArgs = api.Arguments.createArguments(0)
train_data_generator = input_order_converter(
read_from_mnist(train_file))
for batch_id, data_batch in enumerate(
generator_to_batch(train_data_generator, 256)):
trainRole = updater.startBatch(len(data_batch))
def update_callback(param):
updater.update(param)
m.forwardBackward(
converter(data_batch), outArgs, trainRole, update_callback)
cost_vec = outArgs.getSlotValue(0)
cost_vec = cost_vec.copyToNumpyMat()
cost = cost_vec.sum() / len(data_batch)
print 'Batch id', batch_id, 'with cost=', cost
updater.finishBatch(cost)
updater.finishPass()
m.finish()
if __name__ == '__main__':
main()