You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/gradient_accumulator.cc

479 lines
18 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace imperative {
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
bool force_copy) {
if (!force_copy) {
*dst = std::move(*src);
return;
}
VLOG(10) << "Copy occurs when accumulating gradients";
if (src->IsType<framework::LoDTensor>()) {
auto& src_tensor = src->Get<framework::LoDTensor>();
if (!dst->IsType<framework::LoDTensor>()) {
dst->Clear();
}
auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
dst_tensor->set_lod(src_tensor.lod());
} else if (src->IsType<framework::SelectedRows>()) {
auto& src_selected_rows = src->Get<framework::SelectedRows>();
if (!dst->IsType<framework::SelectedRows>()) {
dst->Clear();
}
auto* dst_selected_rows = dst->GetMutable<framework::SelectedRows>();
framework::TensorCopy(src_selected_rows.value(),
src_selected_rows.value().place(),
dst_selected_rows->mutable_value());
dst_selected_rows->set_rows(src_selected_rows.rows());
dst_selected_rows->set_height(src_selected_rows.height());
} else {
PADDLE_THROW(platform::errors::PermissionDenied(
"Only support LoDTensor and SelectedRows for gradient accumulation"));
}
}
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
public:
TensorAddFunctor(int64_t numel, const T* x, T* y)
: numel_(numel), x_(x), y_(y) {}
void operator()(const platform::CPUPlace& place) {
platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
platform::DeviceContextPool::Instance().Get(place));
auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
blas.AXPY(numel_, 1., x_, y_);
}
#ifdef PADDLE_WITH_CUDA
void operator()(const platform::CUDAPlace& place) {
platform::CUDADeviceContext* ctx =
dynamic_cast<platform::CUDADeviceContext*>(
platform::DeviceContextPool::Instance().Get(place));
auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
blas.AXPY(numel_, 1., x_, y_);
}
#else
void operator()(const platform::CUDAPlace& place) {
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
}
#endif
// there is NO blas in CUDAPinnedPlace
void operator()(const platform::CUDAPinnedPlace& place) {
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
}
private:
int64_t numel_;
const T* x_;
T* y_;
};
void TensorAdd(const framework::Variable& src, framework::Variable* dst) {
auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
auto& src_tensor = src.Get<framework::LoDTensor>();
auto numel = src_tensor.numel();
// FIXME(minqiyang): loss_grad op will pass a zero grad of label
// ugly fix for it
if (numel == 0) {
return;
}
PADDLE_ENFORCE_EQ(dst_tensor->numel() == numel, true,
"dst_numel %d vs. src_numel %d", dst_tensor->numel(),
numel);
auto data_type = src_tensor.type();
auto place = src_tensor.place();
#define PADDLE_TENSOR_ADD(cpp_type) \
if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
TensorAddFunctor<cpp_type> func( \
numel, src_tensor.data<cpp_type>(), \
dst_tensor->mutable_data<cpp_type>(place)); \
boost::apply_visitor(func, place); \
return; \
}
PADDLE_TENSOR_ADD(float);
PADDLE_TENSOR_ADD(double);
#undef PADDLE_TENSOR_ADD
PADDLE_THROW("Not supported data type %s for AddTo",
framework::DataTypeToString(data_type));
}
void SelectedRowsAddToTensor(const framework::Variable& src,
framework::Variable* dst) {
auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
auto& src_selected_rows = src.Get<framework::SelectedRows>();
auto place = dst_tensor->place();
auto data_type = src_selected_rows.value().type();
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type) \
if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
paddle::platform::DeviceContext* dev_ctx = pool.Get(place); \
paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
functor; \
functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
dst_tensor); \
return; \
}
#ifdef PADDLE_WITH_CUDA
if (paddle::platform::is_gpu_place(place)) {
PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
} else {
#endif
PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
}
#endif
#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR
PADDLE_THROW(platform::errors::InvalidArgument(
"Not supported data type %s for SelectedRowsAddToTensor",
framework::DataTypeToString(data_type)));
}
static void SelectedRowsAddTensor(
const framework::Variable& src_selected_rows_var,
const framework::Variable& src_tensor_var,
framework::Variable* dst_tensor_var) {
const auto& src_selected_rows =
src_selected_rows_var.Get<framework::SelectedRows>();
const auto& src_tensor = src_tensor_var.Get<framework::LoDTensor>();
const auto& place = src_tensor.place();
auto data_type = src_tensor.type();
auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
auto* dst_tensor = dst_tensor_var->GetMutable<framework::LoDTensor>();
dst_tensor->Resize(src_tensor.dims());
dst_tensor->mutable_data(place, data_type);
#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type) \
if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
functor; \
functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
src_tensor, dst_tensor); \
return; \
}
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(place)) {
PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
} else {
#endif
PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
}
#endif
PADDLE_THROW(platform::errors::InvalidArgument(
"Not supported data type %s for SelectedRowsAddToTensor",
framework::DataTypeToString(data_type)));
#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}
// Note(chenweihang): when two selected rows need to be added,
// adding one to another is not equal to merging two selected rows
// to one then add it to a empty selected rows, the after is correct
std::shared_ptr<VariableWrapper> SelectedRowsMerge(
const framework::Variable& src1, const framework::Variable& src2) {
auto& src_selected_rows1 = src1.Get<framework::SelectedRows>();
auto& src_selected_rows2 = src2.Get<framework::SelectedRows>();
auto place = src_selected_rows1.value().place();
auto data_type = src_selected_rows1.value().type();
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
std::vector<const framework::SelectedRows*> src_selected_rows;
src_selected_rows.emplace_back(&src_selected_rows1);
src_selected_rows.emplace_back(&src_selected_rows2);
auto dst_var = std::make_shared<VariableWrapper>("Temp");
auto* dst_selected_rows =
dst_var->MutableVar()->GetMutable<framework::SelectedRows>();
#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type) \
if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
paddle::platform::DeviceContext* dev_ctx = pool.Get(place); \
paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type> \
merge_add; \
merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
dst_selected_rows); \
return dst_var; \
}
#ifdef PADDLE_WITH_CUDA
if (paddle::platform::is_gpu_place(place)) {
PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
} else {
#endif
PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
}
#endif
#undef PADDLE_SELECTED_ROWS_ADD
PADDLE_THROW(platform::errors::InvalidArgument(
"Not supported data type %s for SelectedRowsMerge",
framework::DataTypeToString(data_type)));
}
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
VariableWrapper* var_, bool unchange_input) {
auto& src = var->Var();
auto* dst = var_->MutableVar();
if (dst->IsType<framework::LoDTensor>()) {
if (src.IsType<framework::LoDTensor>()) {
TensorAdd(src, dst);
} else if (src.IsType<framework::SelectedRows>()) {
SelectedRowsAddToTensor(src, dst);
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Unexpected branch, output variable type is %s",
framework::ToTypeName(dst->Type())));
}
} else {
if (src.IsType<framework::LoDTensor>()) {
if (unchange_input) {
framework::Variable new_dst;
SelectedRowsAddTensor(*dst, src, &new_dst);
*dst = std::move(new_dst);
} else {
auto* src_mutable = var->MutableVar();
SelectedRowsAddToTensor(*dst, src_mutable);
*dst = std::move(*(var->MutableVar()));
}
} else if (src.IsType<framework::SelectedRows>()) {
auto temp = SelectedRowsMerge(src, *dst);
*dst = std::move(*(temp->MutableVar()));
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Unexpected branch, output variable type is %s",
framework::ToTypeName(dst->Type())));
}
}
}
static platform::Place GetPlaceOfVar(
const std::shared_ptr<VariableWrapper>& var) {
platform::Place place;
if (var->Var().IsType<framework::LoDTensor>()) {
place = var->Var().Get<framework::LoDTensor>().place();
} else if (var->Var().IsType<framework::SelectedRows>()) {
place = var->Var().Get<framework::SelectedRows>().place();
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"only support LoDTensor and SelectedRows in dygraph"));
}
return place;
}
void EagerGradientAccumulator::Add(std::shared_ptr<VariableWrapper> var,
size_t trace_id, bool unchange_input) {
/**
* If var has grad node, it indicates that this var would be an input
* of a grad op. Therefore, it should not be changed.
*/
if (var->HasGradNode()) {
unchange_input = true;
}
auto* dst_var = var_->MutableVar();
platform::Place place = GetPlaceOfVar(var);
if (!var_->OverridedStopGradient()) {
VLOG(3) << "Sum Gradient for: " << var_->Name();
if (cur_cnt_ == 0) {
MoveOrCopyVar(dst_var, var->MutableVar(), unchange_input);
} else {
VariableWrapperAdd(var, var_, unchange_input);
}
} else {
if (!var_->Var().IsInitialized() ||
!var_->Var().Get<framework::LoDTensor>().IsInitialized()) {
VLOG(6) << "Set StopGradient Grad: " << var_->Name() << " as zero ";
auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
if (!var_->Var().IsInitialized()) {
auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
VLOG(6) << "Dims of " << var_->Name() << " is set as: "
<< var->Var().Get<framework::LoDTensor>().dims();
tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
tensor->mutable_data(place, var->DataType());
operators::math::set_constant(*dev_ctx, tensor, 0.0);
} else {
auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
tensor->mutable_data(place, var->DataType());
operators::math::set_constant(*dev_ctx, tensor, 0.0);
}
}
}
++cur_cnt_;
if (var_->Var().IsType<framework::LoDTensor>()) {
var_->SetType(framework::proto::VarType::LOD_TENSOR);
} else if (var_->Var().IsType<framework::SelectedRows>()) {
var_->SetType(framework::proto::VarType::SELECTED_ROWS);
}
}
void SortedGradientAccumulator::Add(std::shared_ptr<VariableWrapper> var,
size_t trace_id, bool unchange_input) {
auto* dst_var = var_->MutableVar();
platform::Place place = GetPlaceOfVar(var);
if (!var_->OverridedStopGradient()) {
if (ref_cnt_ == 1) {
MoveOrCopyVar(dst_var, var->MutableVar(),
unchange_input || var->HasGradNode());
} else {
if (tmp_grad_vars_.empty()) {
tmp_grad_vars_.reserve(ref_cnt_);
}
tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
if (tmp_grad_vars_.size() != ref_cnt_) {
return;
}
std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
[](const SavedVarInfo& info1, const SavedVarInfo& info2) {
return info1.trace_id > info2.trace_id;
});
for (auto& var_info : tmp_grad_vars_) {
if (var_info.var->HasGradNode()) {
var_info.unchange_input = true;
}
}
#ifdef PADDLE_WITH_CUDA
if (paddle::platform::is_gpu_place(place)) {
bool dst_varbase_is_initialized = false;
// accumulate selected rows firstly
for (auto& var_info : tmp_grad_vars_) {
if (!var_info.var->Var().IsType<framework::SelectedRows>()) {
continue;
}
if (!dst_varbase_is_initialized) {
dst_varbase_is_initialized = true;
MoveOrCopyVar(dst_var, var_info.var->MutableVar(),
var_info.unchange_input);
} else {
VariableWrapperAdd(var_info.var, var_, var_info.unchange_input);
}
var_info.var = nullptr;
}
for (auto& var_info : tmp_grad_vars_) {
if (!var_info.var) {
continue;
}
PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
true, platform::errors::PermissionDenied(
"Gradient var must be LoDTensor"));
if (!dst_varbase_is_initialized) {
dst_varbase_is_initialized = true;
MoveOrCopyVar(dst_var, var_info.var->MutableVar(),
var_info.unchange_input);
} else {
VariableWrapperAdd(var_info.var, var_, var_info.unchange_input);
}
var_info.var = nullptr;
}
} else {
#endif
MoveOrCopyVar(dst_var, tmp_grad_vars_[0].var->MutableVar(),
tmp_grad_vars_[0].unchange_input);
for (size_t i = 1; i < tmp_grad_vars_.size(); ++i) {
VariableWrapperAdd(tmp_grad_vars_[i].var, var_,
tmp_grad_vars_[i].unchange_input);
tmp_grad_vars_[i].var = nullptr;
}
#ifdef PADDLE_WITH_CUDA
}
#endif
tmp_grad_vars_.clear();
}
} else {
if (!var_->Var().IsInitialized() ||
!var_->Var().Get<framework::LoDTensor>().IsInitialized()) {
VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
if (!var_->Var().IsInitialized()) {
auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
VLOG(6) << "Dims of " << var_->Name() << " is set as: "
<< var->Var().Get<framework::LoDTensor>().dims();
tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
tensor->mutable_data(place, var->DataType());
operators::math::set_constant(*dev_ctx, tensor, 0.0);
} else {
auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
tensor->mutable_data(place, var->DataType());
operators::math::set_constant(*dev_ctx, tensor, 0.0);
}
}
// looks like tmp_grad_vars will not have any member but just in case
tmp_grad_vars_.clear();
}
if (var_->Var().IsType<framework::LoDTensor>()) {
var_->SetType(framework::proto::VarType::LOD_TENSOR);
} else if (var_->Var().IsType<framework::SelectedRows>()) {
var_->SetType(framework::proto::VarType::SELECTED_ROWS);
}
}
} // namespace imperative
} // namespace paddle