You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.0 KiB
172 lines
6.0 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/cvm_op.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
#define CUDA_KERNEL_LOOP(i, n) \
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
|
i += blockDim.x * gridDim.x)
|
|
|
|
template <typename T>
|
|
__global__ void CvmComputeKernel(const bool use_cvm, const int64_t item_width,
|
|
const T* X, T* Y, int64_t numel) {
|
|
CUDA_KERNEL_LOOP(i, numel) {
|
|
if (use_cvm) {
|
|
if (i % item_width == 0) {
|
|
Y[i] = log(X[i] + 1);
|
|
} else if (i % item_width == 1) {
|
|
Y[i] = log(X[i] + 1) - log(X[i - 1] + 1);
|
|
} else {
|
|
Y[i] = X[i];
|
|
}
|
|
} else {
|
|
Y[i] = X[i / (item_width - 2) * item_width + i % (item_width - 2) + 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void CvmGradComputeKernel(const bool use_cvm,
|
|
const int64_t item_width, const T* CVM,
|
|
const T* DY, T* DX, bool has_lod,
|
|
const size_t* lod, size_t lod_size,
|
|
int64_t numel) {
|
|
CUDA_KERNEL_LOOP(i, numel) {
|
|
int offset = i % item_width;
|
|
if (offset <= 1) {
|
|
int cvm_id = i / item_width;
|
|
if (has_lod) {
|
|
int low = 1;
|
|
int high = lod_size - 1;
|
|
while (low < high) {
|
|
int mid = (low + high) / 2;
|
|
if (cvm_id < lod[mid])
|
|
high = mid;
|
|
else
|
|
low = mid + 1;
|
|
}
|
|
cvm_id = low - 1;
|
|
}
|
|
DX[i] = CVM[2 * cvm_id + offset];
|
|
} else {
|
|
if (use_cvm) {
|
|
DX[i] = DY[i];
|
|
} else {
|
|
DX[i] = DY[i / item_width * (item_width - 2) + i % item_width - 2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class CVMCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const auto* x = context.Input<LoDTensor>("X");
|
|
const T* x_data = x->data<T>();
|
|
|
|
auto batch_size = x->dims()[0];
|
|
auto numel = x->numel();
|
|
auto item_size = numel / batch_size;
|
|
auto use_cvm = context.Attr<bool>("use_cvm");
|
|
|
|
auto* y = context.Output<LoDTensor>("Y");
|
|
T* y_data = y->mutable_data<T>(context.GetPlace());
|
|
|
|
// for Input X do not have Lod Information.
|
|
auto stream =
|
|
context.template device_context<platform::CUDADeviceContext>().stream();
|
|
if (x->NumLevels() == 0) {
|
|
CvmComputeKernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
|
|
PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
use_cvm, item_size, x_data, y_data, y->numel());
|
|
} else {
|
|
auto lod = x->lod()[0];
|
|
PADDLE_ENFORCE_EQ(
|
|
batch_size, lod[lod.size() - 1],
|
|
platform::errors::PreconditionNotMet(
|
|
"Input(X)'s dim[0] must be equal to last element of lod"));
|
|
CvmComputeKernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
|
|
PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
use_cvm, item_size, x_data, y_data, y->numel());
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CVMGradCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* dx = context.Output<LoDTensor>(framework::GradVarName("X"));
|
|
T* dx_data = dx->mutable_data<T>(context.GetPlace());
|
|
|
|
const Tensor* cvm = context.Input<Tensor>("CVM");
|
|
const T* cvm_data = cvm->data<T>();
|
|
|
|
const auto* dOut =
|
|
context.Input<framework::LoDTensor>(framework::GradVarName("Y"));
|
|
const T* dout_data = dOut->data<T>();
|
|
|
|
auto use_cvm = context.Attr<bool>("use_cvm");
|
|
|
|
auto offset = 2;
|
|
auto batch_size = dx->dims()[0];
|
|
auto dx_numel = dx->numel();
|
|
auto item_size = dx_numel / batch_size;
|
|
|
|
// for Input X do not have Lod Information.
|
|
auto stream =
|
|
context.template device_context<platform::CUDADeviceContext>().stream();
|
|
if (dx->NumLevels() == 0) {
|
|
CvmGradComputeKernel<<<(dx_numel + PADDLE_CUDA_NUM_THREADS - 1) /
|
|
PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
use_cvm, item_size, cvm_data, dout_data, dx_data, false, NULL, 0,
|
|
dx_numel);
|
|
} else {
|
|
auto lod = dx->lod()[0];
|
|
PADDLE_ENFORCE_EQ(
|
|
batch_size, lod[lod.size() - 1],
|
|
platform::errors::PreconditionNotMet(
|
|
"Output(X@GRAD)'s dim[0] must be equal to last element of lod"));
|
|
CvmGradComputeKernel<<<(dx_numel + PADDLE_CUDA_NUM_THREADS - 1) /
|
|
PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
use_cvm, item_size, cvm_data, dout_data, dx_data, true,
|
|
lod.CUDAData(context.GetPlace()), lod.size(), dx_numel);
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(cvm, ops::CVMCUDAKernel<float>,
|
|
ops::CVMCUDAKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(cvm_grad, ops::CVMGradCUDAKernel<float>,
|
|
ops::CVMGradCUDAKernel<double>);
|