You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.2 KiB
145 lines
5.2 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
#include "paddle/fluid/operators/gelu_op.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class GeluOp : public framework::OperatorWithKernel {
|
|
public:
|
|
GeluOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(%s) of GeluOp should not be null.", "X"));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(%s) of GeluOp should not be null.", "Out"));
|
|
|
|
ctx->ShareDim("X", /*->*/ "Out");
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class GeluGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(%s) of GeluGradOp should not be null.", "DOut"));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(%s) of GeluGradOp should not be null.", "X"));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput(framework::GradVarName("X")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(%s) of GeluGradOp should not be null.", "DX"));
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", /*->*/ x_grad_name);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class GeluOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "Input of Gelu operator");
|
|
AddOutput("Out", "Output of Gelu operator");
|
|
AddAttr<bool>("approximate",
|
|
"(bool, default false) use approximation of gelu")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("use_cudnn",
|
|
"(bool, default false) Only used in cudnn kernel, need "
|
|
"install cudnn")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set to true for inference only, false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Gelu Activation Operator.
|
|
|
|
For more details, please refer to [Gaussian Error Linear Units](https://arxiv.org/pdf/1606.08415.pdf).
|
|
|
|
when using approximation
|
|
$out = \\frac{1}{2}x(1+tanh(\\sqrt{\\frac{2}{\\pi}}(x+0.044715x^{3}))$
|
|
|
|
or else
|
|
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class GeluGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> grad_op) const override {
|
|
grad_op->SetType("gelu_grad");
|
|
grad_op->SetInput("X", this->Input("X"));
|
|
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
grad_op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(gelu, ops::GeluOp, ops::GeluOpMaker,
|
|
ops::GeluGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::GeluGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(gelu_grad, ops::GeluGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
gelu, ops::GeluKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::GeluKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
gelu_grad, ops::GeluGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::GeluGradKernel<paddle::platform::CPUDeviceContext, double>);
|