You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
5.5 KiB
134 lines
5.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
|
|
using DataLayout = platform::DataLayout;
|
|
using ScopedSpatialTransformerDescriptor =
|
|
platform::ScopedSpatialTransformerDescriptor;
|
|
template <typename T>
|
|
using CudnnDataType = platform::CudnnDataType<T>;
|
|
|
|
template <typename T>
|
|
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use CUDAPlace");
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto handle = dev_ctx.cudnn_handle();
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* grid = ctx.Input<Tensor>("Grid");
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
int n = input->dims()[0];
|
|
int c = input->dims()[1];
|
|
int h = input->dims()[2];
|
|
int w = input->dims()[3];
|
|
const int size[4] = {n, c, h, w};
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* grid_data = grid->data<T>();
|
|
T* output_data = output->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
|
|
|
|
ScopedSpatialTransformerDescriptor st_desc;
|
|
cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
|
|
st_desc.descriptor<T>(4, size);
|
|
|
|
ScopedTensorDescriptor input_desc;
|
|
ScopedTensorDescriptor output_desc;
|
|
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
|
|
DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
|
|
cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
|
|
DataLayout::kNCHW, framework::vectorize<int>(output->dims()));
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSpatialTfSamplerForward(
|
|
handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
|
|
input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
|
|
output_data));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use CUDAPlace");
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto handle = dev_ctx.cudnn_handle();
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* grid = ctx.Input<Tensor>("Grid");
|
|
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));
|
|
|
|
auto output_grad_dims = output_grad->dims();
|
|
const int n = output_grad_dims[0];
|
|
const int c = output_grad_dims[1];
|
|
const int h = output_grad_dims[2];
|
|
const int w = output_grad_dims[3];
|
|
const int size[4] = {n, c, h, w};
|
|
|
|
ScopedSpatialTransformerDescriptor st_dest;
|
|
cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
|
|
st_dest.descriptor<T>(4, size);
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* grid_data = grid->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
T* input_grad_data =
|
|
input_grad->mutable_data<T>(output_grad_dims, ctx.GetPlace());
|
|
T* grid_grad_data =
|
|
grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
|
|
|
|
ScopedTensorDescriptor input_desc;
|
|
ScopedTensorDescriptor input_grad_desc;
|
|
ScopedTensorDescriptor output_grad_desc;
|
|
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
|
|
DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
|
|
cudnnTensorDescriptor_t cudnn_input_grad_desc =
|
|
input_grad_desc.descriptor<T>(
|
|
DataLayout::kNCHW, framework::vectorize<int>(input_grad->dims()));
|
|
cudnnTensorDescriptor_t cudnn_output_grad_desc =
|
|
output_grad_desc.descriptor<T>(
|
|
DataLayout::kNCHW, framework::vectorize<int>(output_grad->dims()));
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
platform::dynload::cudnnSpatialTfSamplerBackward(
|
|
handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
|
|
input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
|
|
input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
|
|
output_grad_data, grid_data, CudnnDataType<T>::kZero(),
|
|
grid_grad_data));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace plat = paddle::platform;
|
|
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
|
|
paddle::operators::CUDNNGridSampleOpKernel<float>,
|
|
paddle::operators::CUDNNGridSampleOpKernel<double>);
|
|
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
|
|
paddle::operators::CUDNNGridSampleGradOpKernel<float>,
|
|
paddle::operators::CUDNNGridSampleGradOpKernel<double>);
|