You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
7.4 KiB
191 lines
7.4 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/roi_align_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
class ROIAlignOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ROIAlignOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("ROIs"),
|
|
"Input(ROIs) of ROIAlignOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ROIAlignOp should not be null.");
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
auto rois_dims = ctx->GetInputDim("ROIs");
|
|
|
|
PADDLE_ENFORCE(input_dims.size() == 4,
|
|
"The format of input tensor is NCHW.");
|
|
PADDLE_ENFORCE(rois_dims.size() == 2,
|
|
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
|
|
"given as [[x1, y1, x2, y2], ...].");
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE(rois_dims[1] == 4,
|
|
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
|
|
"given as [[x1, y1, x2, y2], ...].");
|
|
}
|
|
int pooled_height = ctx->Attrs().Get<int>("pooled_height");
|
|
int pooled_width = ctx->Attrs().Get<int>("pooled_width");
|
|
float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");
|
|
|
|
PADDLE_ENFORCE_GT(pooled_height, 0,
|
|
"The pooled output height must greater than 0");
|
|
PADDLE_ENFORCE_GT(pooled_width, 0,
|
|
"The pooled output width must greater than 0");
|
|
PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
|
|
"The spatial scale must greater than 0");
|
|
|
|
auto out_dims = input_dims;
|
|
out_dims[0] = rois_dims[0];
|
|
out_dims[1] = input_dims[1];
|
|
out_dims[2] = pooled_height;
|
|
out_dims[3] = pooled_width;
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ROIAlignGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"The GRAD@Out of ROIAlignGradOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
|
|
"The GRAD@X of ROIAlignGradOp should not be null.");
|
|
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "ROIs"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor), "
|
|
"The input of ROIAlignOp. The data type is float32 or float64."
|
|
"The format of input tensor is NCHW. Where N is batch size, "
|
|
"C is the number of input channels, "
|
|
"H is the height of the feature, and "
|
|
"W is the width of the feature.");
|
|
AddInput("ROIs",
|
|
"(LoDTensor), "
|
|
"ROIs (Regions of Interest) to pool over. "
|
|
"should be a 2-D LoDTensor of shape (num_rois, 4)"
|
|
"given as [[x1, y1, x2, y2], ...]. "
|
|
"(x1, y1) is the top left coordinates, and "
|
|
"(x2, y2) is the bottom right coordinates.");
|
|
AddOutput("Out",
|
|
"(Tensor), "
|
|
"The output of ROIAlignOp is a 4-D tensor with shape "
|
|
"(num_rois, channels, pooled_h, pooled_w). The data type is "
|
|
"float32 or float64.");
|
|
AddAttr<float>("spatial_scale",
|
|
"(float, default 1.0), "
|
|
"Multiplicative spatial scale factor "
|
|
"to translate ROI coords from their input scale "
|
|
"to the scale used when pooling.")
|
|
.SetDefault(1.0);
|
|
AddAttr<int>("pooled_height",
|
|
"(int, default 1), "
|
|
"The pooled output height.")
|
|
.SetDefault(1);
|
|
AddAttr<int>("pooled_width",
|
|
"(int, default 1), "
|
|
"The pooled output width.")
|
|
.SetDefault(1);
|
|
AddAttr<int>("sampling_ratio",
|
|
"(int,default -1),"
|
|
"number of sampling points in the interpolation grid"
|
|
"If <=0, then grid points are adaptive to roi_width "
|
|
"and pooled_w, likewise for height")
|
|
.SetDefault(-1);
|
|
AddComment(R"DOC(
|
|
**RoIAlign Operator**
|
|
|
|
Region of interest align (also known as RoI align) is to perform
|
|
bilinear interpolation on inputs of nonuniform sizes to obtain
|
|
fixed-size feature maps (e.g. 7*7)
|
|
|
|
Dividing each region proposal into equal-sized sections with
|
|
the pooled_width and pooled_height. Location remains the origin
|
|
result.
|
|
|
|
In each ROI bin, the value of the four regularly sampled locations
|
|
are computed directly through bilinear interpolation. The output is
|
|
the mean of four locations.
|
|
Thus avoid the misaligned problem.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ROIAlignGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("roi_align_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("ROIs", this->Input("ROIs"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(RoiAlignGradNoNeedBufVarsInferer, "X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(roi_align, ops::ROIAlignOp, ops::ROIAlignOpMaker,
|
|
ops::ROIAlignGradMaker<paddle::framework::OpDesc>,
|
|
ops::ROIAlignGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(roi_align_grad, ops::ROIAlignGradOp,
|
|
ops::RoiAlignGradNoNeedBufVarsInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
roi_align,
|
|
ops::CPUROIAlignOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUROIAlignOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
roi_align_grad,
|
|
ops::CPUROIAlignGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUROIAlignGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|