You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.7 KiB
134 lines
4.7 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/pooling.h"
|
|
#include "paddle/fluid/operators/utils.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class UnsqueezeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto axes = context.Attr<std::vector<int>>("axes");
|
|
auto *in = context.Input<framework::LoDTensor>("X");
|
|
auto *out = context.Output<framework::LoDTensor>("Out");
|
|
auto x_dims = in->dims();
|
|
|
|
bool need_resize_out_dims = false;
|
|
if (axes.empty()) {
|
|
auto axes_tensor_list =
|
|
context.MultiInput<framework::Tensor>("AxesTensorList");
|
|
if (axes_tensor_list.size() > 0) {
|
|
axes = GetDataFromTensorList<int>(axes_tensor_list);
|
|
} else if (context.HasInput("AxesTensor")) {
|
|
auto *axes_tensor = context.Input<framework::Tensor>("AxesTensor");
|
|
axes = GetDataFromTensor<int>(axes_tensor);
|
|
}
|
|
need_resize_out_dims = true;
|
|
}
|
|
framework::DDim out_dims = out->dims();
|
|
if (need_resize_out_dims) {
|
|
out_dims = GetOutputShape(axes, x_dims);
|
|
out->Resize(out_dims);
|
|
}
|
|
out->mutable_data(context.GetPlace(), in->type());
|
|
framework::TensorCopy(
|
|
*in, context.GetPlace(),
|
|
context.template device_context<platform::DeviceContext>(), out);
|
|
out->Resize(out_dims);
|
|
}
|
|
|
|
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
|
|
const framework::DDim &in_dims) {
|
|
int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
|
|
int cur_output_size = in_dims.size();
|
|
std::vector<int64_t> output_shape(output_size, 0);
|
|
|
|
// Validity Check: rank range.
|
|
PADDLE_ENFORCE_LE(output_size, 6,
|
|
"The output tensor's rank should be less than 6.");
|
|
|
|
for (int axis : unsqz_dims) {
|
|
int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
|
|
// Vaildity Check: the axis bound
|
|
PADDLE_ENFORCE_GE(cur, 0);
|
|
PADDLE_ENFORCE_LE(cur, cur_output_size);
|
|
// Move old axis, and insert new axis
|
|
for (int i = cur_output_size; i >= cur; --i) {
|
|
if (output_shape[i] == 1) {
|
|
// Move axis
|
|
output_shape[i + 1] = 1;
|
|
output_shape[i] = 0;
|
|
}
|
|
}
|
|
output_shape[cur] = 1;
|
|
// Add the output size.
|
|
cur_output_size++;
|
|
}
|
|
|
|
// Make output shape
|
|
for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
|
|
if (output_shape[out_idx] == 0) {
|
|
output_shape[out_idx] = in_dims[in_idx++];
|
|
}
|
|
}
|
|
|
|
return framework::make_ddim(output_shape);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class UnsqueezeGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *d_out =
|
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
|
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();
|
|
|
|
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
|
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
|
d_x->Resize(in_dims);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class Unsqueeze2GradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *d_out =
|
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
|
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
// auto in_dims = d_x->dims();
|
|
|
|
auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
|
|
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
|
|
|
|
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
|
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
|
d_x->Resize(x_dims);
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|