You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
3.1 KiB
86 lines
3.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/adagrad_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class AdagradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("param"),
|
|
"Input(param) of AdagradOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("grad"),
|
|
"Input(grad) of AdagradOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("moment"),
|
|
"Input(moment) of AdagradOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("param_out"),
|
|
"Output(param_out) of AdagradOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("moment_out"),
|
|
"Output(moment_out) of AdagradOp should not be null.");
|
|
|
|
auto param_dim = ctx->GetInputDim("param");
|
|
PADDLE_ENFORCE_EQ(
|
|
param_dim, ctx->GetInputDim("grad"),
|
|
"Param and grad input of AdagradOp should have the same dimension.");
|
|
PADDLE_ENFORCE_EQ(
|
|
param_dim, ctx->GetInputDim("moment"),
|
|
"Param and moment input of AdagradOp should have the same dimension.");
|
|
|
|
ctx->SetOutputDim("param_out", param_dim);
|
|
ctx->SetOutputDim("moment_out", param_dim);
|
|
}
|
|
};
|
|
|
|
class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
AdagradOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("param", "Input parameter");
|
|
AddInput("grad", "Input gradient");
|
|
AddInput("moment", "Second moment");
|
|
|
|
AddOutput("param_out", "Output parameter");
|
|
AddOutput("moment_out", "Output second moment");
|
|
|
|
AddAttr<float>("learning_rate", "Learning rate");
|
|
AddAttr<float>("epsilon", "Constant for numerical stability");
|
|
AddComment(R"DOC(
|
|
|
|
Adaptive Gradient Algorithm (Adagrad).
|
|
|
|
moment_out = moment + grad * grad
|
|
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
|
|
|
|
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
|
|
does not have the epsilon attribute. It is added here for numerical stability
|
|
by avoiding division by zero.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(adagrad,
|
|
ops::AdagradOpKernel<paddle::platform::CPUPlace, float>);
|