You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
7.7 KiB
196 lines
7.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/pool_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
|
|
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
|
|
return output_size;
|
|
}
|
|
|
|
class PoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"X(Input) of Pooling should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Out(Output) of Pooling should not be null.");
|
|
|
|
auto in_x_dims = ctx->GetInputDim("X");
|
|
|
|
std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
|
|
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
|
|
PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
|
|
"pooling_type should be 'max' or 'avg'");
|
|
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
|
|
"Pooling intput should be 4-D or 5-D");
|
|
|
|
if (ctx->Attrs().Get<bool>("globalPooling")) {
|
|
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
|
|
for (size_t i = 0; i < ksize.size(); ++i)
|
|
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
|
|
}
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
|
|
"Input size and Pooling size should be consistent.");
|
|
PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
|
|
"Pooling size should be 2 elements. or 3 elements.");
|
|
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
|
|
"strides size and pooling size should be the same.");
|
|
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
|
|
"paddings size and pooling size should be the same.");
|
|
|
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
output_shape.push_back(
|
|
OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
}
|
|
};
|
|
|
|
class PoolOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"X(Input) of Pooling should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Input@Grad of Pooling should not be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"X",
|
|
"The input tensor of pooling operator. "
|
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
|
"number of channels, H and W is the height and width of feature.");
|
|
AddOutput("Out",
|
|
"The output tensor of pooling operator."
|
|
"The format of output tensor is also NCHW.");
|
|
|
|
AddAttr<std::string>("poolingType",
|
|
"PoolingType of pooling operator."
|
|
"Str constant equal to 'max' or 'avg'.")
|
|
.InEnum({"max", "avg"});
|
|
AddAttr<std::vector<int>>(
|
|
"ksize",
|
|
"Pooling size(depth, height, width) of pooling operator."
|
|
"If globalPooling = true, ksize is ignored and need not be "
|
|
"specified."); // TODO(Add checker)
|
|
AddAttr<bool>(
|
|
"globalPooling",
|
|
"Whether to use the globalPooling."
|
|
"Bool constant equal to false or true."
|
|
"Default false."
|
|
"If globalPooling = true, ksize is ignored and need not be specified.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<int>>("strides",
|
|
"Strides(height, width) of pooling operator."
|
|
"Default {1,1}")
|
|
.SetDefault({1, 1}); // TODO(Add checker)
|
|
AddAttr<std::vector<int>>("paddings",
|
|
"Paddings(height, width) of pooling operator."
|
|
"Default {0,0}.")
|
|
.SetDefault({0, 0}); // TODO(Add checker)
|
|
AddComment(R"DOC(
|
|
The pooling2d operation calculates the output based on
|
|
the input, poolingType and ksize, strides, paddings parameters.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"The input tensor of pooling operator. "
|
|
"The format of input tensor is NCDHW. Where N is batch size, C is "
|
|
"the "
|
|
"number of channels, D, H and W is the depth, height and width of "
|
|
"feature.");
|
|
AddOutput("Out",
|
|
"The output tensor of pooling operator."
|
|
"The format of output tensor is also NCDHW.");
|
|
|
|
AddAttr<std::string>("poolingType",
|
|
"PoolingType of pooling operator."
|
|
"str constant equal to 'max' or 'avg'.")
|
|
.InEnum({"max", "avg"});
|
|
AddAttr<std::vector<int>>(
|
|
"ksize",
|
|
"Pooling size(depth, height, width) of pooling operator."
|
|
"If globalPooling = true, ksize is ignored and need not be "
|
|
"specified."); // TODO(Add checker)
|
|
AddAttr<bool>(
|
|
"globalPooling",
|
|
"Whether to use the globalPooling."
|
|
"Bool constant equal to false or true."
|
|
"Default false."
|
|
"If globalPooling = true, ksize is ignored and need not be specified.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<int>>(
|
|
"strides",
|
|
"Strides(depth, height, width) of pooling operator."
|
|
"Default {1,1,1}.")
|
|
.SetDefault({1, 1, 1}); // TODO(Add checker)
|
|
AddAttr<std::vector<int>>(
|
|
"paddings",
|
|
"Paddings(depth, height, width) of pooling operator."
|
|
"Default {0,0,0}.")
|
|
.SetDefault({0, 0, 0}); // TODO(Add checker)
|
|
AddComment(R"DOC(
|
|
The pooling3d operation calculates the output based on
|
|
the input, poolingType and ksize, strides, paddings parameters.
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
|
|
ops::PoolOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(pool2d,
|
|
ops::PoolKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(pool2d_grad,
|
|
ops::PoolGradKernel<paddle::platform::CPUPlace, float>)
|
|
|
|
REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
|
|
ops::PoolOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(pool3d,
|
|
ops::PoolKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(pool3d_grad,
|
|
ops::PoolGradKernel<paddle::platform::CPUPlace, float>);
|