You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
3.0 KiB
85 lines
3.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/sum_op.h"
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
class SumOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
|
auto x_dims = ctx->GetInputsDim("X");
|
|
PADDLE_ENFORCE(!x_dims.empty(), "Input(X) of SumOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SumOp should not be null.");
|
|
|
|
auto in_dim = x_dims[0];
|
|
size_t N = x_dims.size();
|
|
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
|
|
for (size_t i = 1; i < N; i++) {
|
|
auto dim = x_dims[i];
|
|
PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
|
|
}
|
|
ctx->SetOutputDim("Out", in_dim);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "the input tensors of sum operator.")
|
|
.AsDuplicable()
|
|
.NotInGradient();
|
|
AddOutput("Out", "the output tensor of sum operator.").NotInGradient();
|
|
AddComment(R"DOC(
|
|
Sum the input tensors.
|
|
|
|
All the inputs can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD with the first input.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SumGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
|
auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
auto x_grad_names = ctx->Outputs(framework::GradVarName("X"));
|
|
size_t x_length = x_grad_names.size();
|
|
std::vector<framework::DDim> x_grad_dims;
|
|
x_grad_dims.reserve(x_length);
|
|
for (size_t i = 0; i < x_length; ++i) {
|
|
x_grad_dims.push_back(out_grad_dims);
|
|
}
|
|
ctx->SetOutputsDim(framework::GradVarName("X"), x_grad_dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp);
|
|
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(sum_grad,
|
|
ops::SumGradKernel<paddle::platform::CPUPlace, float>);
|