You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							133 lines
						
					
					
						
							4.8 KiB
						
					
					
				
			
		
		
	
	
							133 lines
						
					
					
						
							4.8 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/huber_loss_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class HuberLossOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
 | 
						|
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
 | 
						|
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
 | 
						|
                      "The rank of Input(X) must be 2 and the shape is "
 | 
						|
                      "[batch_size, 1].");
 | 
						|
    PADDLE_ENFORCE_EQ(x_dims[1], 1,
 | 
						|
                      "Each row of Input(X) contains a real value, "
 | 
						|
                      "so the 2nd dimension of Input(X) must be 1.");
 | 
						|
 | 
						|
    ctx->SetOutputDim("Residual", x_dims);
 | 
						|
    ctx->SetOutputDim("Out", {x_dims[0], 1});
 | 
						|
    ctx->ShareLoD("X", "Out");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename AttrType>
 | 
						|
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X",
 | 
						|
             "The input value of huber loss op."
 | 
						|
             "X is a 2-D tensor with shape [batch_size, 1].");
 | 
						|
    AddInput("Y",
 | 
						|
             "The target value of huber loss op."
 | 
						|
             "Y is a 2-D tensor with shape [batch_size, 1].");
 | 
						|
    AddOutput("Residual",
 | 
						|
              "Intermediate tensor to cache residual value between Y and X."
 | 
						|
              "The shape is same as Input(X) and will be reused in backward.")
 | 
						|
        .AsIntermediate();
 | 
						|
    AddOutput("Out",
 | 
						|
              "The output tensor with shape [batch_size, 1] "
 | 
						|
              "which represents the huber loss.");
 | 
						|
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
 | 
						|
    AddComment(R"DOC(
 | 
						|
HuberLoss Operator.
 | 
						|
 | 
						|
Huber loss is a loss function used in robust regression. We define X as the
 | 
						|
input value and Y as the target value. Huber loss can evaluate the fitness of
 | 
						|
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
 | 
						|
shape of X and Y are [batch_size, 1]. The equation is:
 | 
						|
 | 
						|
$$
 | 
						|
Out_{\delta}(X, Y)_i =
 | 
						|
\begin{cases}
 | 
						|
0.5 * (Y_i - X_i)^2,
 | 
						|
\quad |Y_i - X_i| \leq \delta \\
 | 
						|
\delta * (|Y_i - X_i| - 0.5 * \delta),
 | 
						|
\quad otherwise
 | 
						|
\end{cases}
 | 
						|
$$
 | 
						|
 | 
						|
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
 | 
						|
element of Out, X and Y.
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class HuberLossGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Residual"),
 | 
						|
                   "Input(Residual) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Input(Out@GRAD) should not be null.");
 | 
						|
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
    auto residual_dims = ctx->GetInputDim("Residual");
 | 
						|
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(residual_dims, x_dims);
 | 
						|
    PADDLE_ENFORCE_EQ(out_grad_dims, x_dims);
 | 
						|
 | 
						|
    auto x_grad_name = framework::GradVarName("X");
 | 
						|
    auto y_grad_name = framework::GradVarName("Y");
 | 
						|
    if (ctx->HasOutput(x_grad_name)) {
 | 
						|
      ctx->SetOutputDim(x_grad_name, x_dims);
 | 
						|
    }
 | 
						|
    if (ctx->HasOutput(y_grad_name)) {
 | 
						|
      ctx->SetOutputDim(y_grad_name, y_dims);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    huber_loss_grad,
 | 
						|
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);
 |