You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							81 lines
						
					
					
						
							3.0 KiB
						
					
					
				
			
		
		
	
	
							81 lines
						
					
					
						
							3.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| #include "FunctionTest.h"
 | |
| 
 | |
| namespace paddle {
 | |
| 
 | |
| TEST(CrossMapNormal, real) {
 | |
|   for (size_t numSamples : {5, 32}) {
 | |
|     for (size_t channels : {1, 5, 32}) {
 | |
|       for (size_t imgSizeH : {5, 33, 100}) {
 | |
|         for (size_t imgSizeW : {5, 32, 96}) {
 | |
|           for (size_t size : {1, 2, 3, 5, 7}) {
 | |
|             VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
 | |
|                     << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
 | |
|                     << " size=" << size;
 | |
| 
 | |
|             // init Test object
 | |
|             FunctionCompare test("CrossMapNormal",
 | |
|                                  FuncConfig()
 | |
|                                      .set("size", size)
 | |
|                                      .set("scale", (real)1.5)
 | |
|                                      .set("pow", (real)0.5));
 | |
|             // prepare input arguments
 | |
|             TensorShape shape{numSamples, channels, imgSizeH, imgSizeW};
 | |
|             test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             // run Function
 | |
|             test.run();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(CrossMapNormalGrad, real) {
 | |
|   for (size_t numSamples : {5, 32}) {
 | |
|     for (size_t channels : {1, 5, 32}) {
 | |
|       for (size_t imgSizeH : {5, 33, 100}) {
 | |
|         for (size_t imgSizeW : {5, 32, 96}) {
 | |
|           for (size_t size : {1, 2, 3, 5, 7}) {
 | |
|             VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
 | |
|                     << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
 | |
|                     << " size=" << size;
 | |
| 
 | |
|             FunctionCompare test("CrossMapNormalGrad",
 | |
|                                  FuncConfig()
 | |
|                                      .set("size", size)
 | |
|                                      .set("scale", (real)1.5)
 | |
|                                      .set("pow", (real)0.5));
 | |
|             TensorShape shape{numSamples, channels, imgSizeH, imgSizeW};
 | |
|             test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape));
 | |
|             // run Function
 | |
|             test.run();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace paddle
 |