You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/chunking.conf

126 lines
2.4 KiB

#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
TrainData(ProtoData(
files = 'trainer/tests/train_files.txt',
usage_ratio = 1.0,
))
TestData(ProtoData(
files = 'trainer/tests/test_files.txt'
))
default_initial_std(1)
default_decay_rate(4e-4)
default_device(0)
Inputs("features", "word", "pos", "chunk")
Outputs("crf")
Layer(
name = "features",
type = "data",
size = 4339,
)
Layer(
name = "word",
type = "data",
size = 478,
)
Layer(
name = "pos",
type = "data",
size = 45
)
Layer(
name = "chunk",
type = "data",
size = 23
)
Layer(
name = "output",
type = "mixed",
size = 23,
bias = False,
device = -1,
inputs = [
FullMatrixProjection("features", parameter_name="feature_weights"),
# TableProjection("word"),
# TableProjection("pos"),
],
)
Layer(
name = "crf",
type = "crf",
size = 23,
device = -1,
inputs = [
Input("output", parameter_name="crfw"),
"chunk"
]
)
Layer(
name = "crf_decoding",
type = "crf_decoding",
size = 23,
device = -1,
inputs = [
Input("output", parameter_name="crfw"),
"chunk"
]
)
Evaluator(
name = "error",
type = "sum",
inputs = "crf_decoding",
)
'''
# chuck evaluator cannot be used for GPU training
Evaluator(
name = "chunk_f1",
type = "chunk",
inputs = ["crf_decoding", "chunk"],
chunk_scheme = "IOB",
num_chunk_types = 11,
)
'''
Settings(
algorithm = 'sgd',
batch_size = 100,
average_window = 0.5,
max_average_window = 2500,
learning_rate = 1e-1,
learning_rate_decay_a = 5e-7,
learning_rate_decay_b = 0.75,
l1weight = 0,
l2weight = 1,
c1 = 0.0001,
backoff = 0.5,
owlqn_steps = 100,
max_backoff = 5,
)