You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/sample_trainer_config_paral...

87 lines
2.9 KiB

#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
TrainData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000))
TestData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000))
settings(batch_size = 100)
# Output layer, label layer, cost layer, preferably set to the same environment.
output_device = 0
# Input Layer does not need to specify the device number.
data = data_layer(name='input', size=3)
# Calculate in the CPU.
fc1 = fc_layer(input=data, size=5,
bias_attr=True,
layer_attr=ExtraAttr(device=-1),
act=SigmoidActivation())
# Calculate in the GPU 0.
fc2 = fc_layer(input=fc1, size=10,
bias_attr=True,
layer_attr=ExtraAttr(device=0),
act=SigmoidActivation())
# Calculate in the GPU 1.
fc3 = fc_layer(input=fc1, size=10,
bias_attr=True,
layer_attr=ExtraAttr(device=1),
act=SigmoidActivation())
# Calculate in the GPU 0.
fc4 = fc_layer(input=[fc2,fc3], size=10,
bias_attr=True,
layer_attr=ExtraAttr(device=0),
act=SigmoidActivation())
# Calculate in the GPU 1.
fc5 = fc_layer(input=[fc2,fc3], size=10,
bias_attr=True,
layer_attr=ExtraAttr(device=1),
act=SigmoidActivation())
output = fc_layer(input=[fc4,fc5], size=10,
bias_attr=True,
layer_attr=ExtraAttr(device=output_device),
act=SoftmaxActivation())
if get_config_arg('with_cost', bool, True):
# This is for training the neural network.
# We need to have another data layer for label
# and a layer for calculating cost
lbl = data_layer(name='label', size=1,
layer_attr=ExtraAttr(device=output_device))
outputs(classification_cost(input=output,
label=lbl,
layer_attr=ExtraAttr(device=output_device)))
else:
# This is for prediction where we don't have label
# and don't need to calculate cost
outputs(output)