You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
5.5 KiB
181 lines
5.5 KiB
#edit-mode: -*- python -*-
|
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
|
|
|
|
# Note: when making change to this file, please make sure
|
|
# sample_trainer_config_qb_rnn.conf is changed accordingly so that the uniitest
|
|
# for comparing these two nets can pass (test_CompareTwoNets)
|
|
|
|
default_initial_std(0.1)
|
|
default_device(0)
|
|
|
|
word_dim = 1451594
|
|
l1 = 0
|
|
l2 = 0
|
|
|
|
model_type("recurrent_nn")
|
|
|
|
sparse_update = get_config_arg("sparse_update", bool, False)
|
|
|
|
TrainData(ProtoData(
|
|
type = "proto_sequence",
|
|
files = ('trainer/tests/train.list'),
|
|
))
|
|
|
|
Settings(
|
|
algorithm='sgd',
|
|
batch_size=100,
|
|
learning_rate=0.0001,
|
|
learning_rate_decay_a=4e-08,
|
|
learning_rate_decay_b=0.0,
|
|
learning_rate_schedule='poly',
|
|
)
|
|
|
|
|
|
wordvec_dim = 128
|
|
layer2_dim = 96
|
|
layer3_dim = 96
|
|
hidden_dim = 128
|
|
|
|
slot_names = ["qb", "qw", "tb", "tw"]
|
|
|
|
def SimpleRecurrentLayer(name,
|
|
size,
|
|
active_type,
|
|
bias,
|
|
input_layer_name,
|
|
parameter_name,
|
|
seq_reversed = False):
|
|
RecurrentLayerGroupBegin(name + "_layer_group",
|
|
in_links=[input_layer_name],
|
|
out_links=[name],
|
|
seq_reversed=seq_reversed)
|
|
memory_name = Memory(name=name, size=size)
|
|
Layer(
|
|
name = name,
|
|
type = "mixed",
|
|
size = size,
|
|
active_type = active_type,
|
|
bias = bias,
|
|
inputs = [IdentityProjection(input_layer_name),
|
|
FullMatrixProjection(memory_name,
|
|
parameter_name = parameter_name,
|
|
),
|
|
]
|
|
)
|
|
RecurrentLayerGroupEnd(name + "_layer_group")
|
|
|
|
|
|
def ltr_network(network_name,
|
|
word_dim=word_dim,
|
|
wordvec_dim=wordvec_dim,
|
|
layer2_dim=layer2_dim,
|
|
layer3_dim=layer3_dim,
|
|
hidden_dim=hidden_dim,
|
|
slot_names=slot_names,
|
|
l1=l1,
|
|
l2=l2):
|
|
|
|
slotnum = len(slot_names)
|
|
for i in xrange(slotnum):
|
|
Inputs(slot_names[i] + network_name)
|
|
for i in xrange(slotnum):
|
|
Layer(
|
|
name = slot_names[i] + network_name,
|
|
type = "data",
|
|
size = word_dim,
|
|
device = -1,
|
|
)
|
|
Layer(
|
|
name = slot_names[i] + "_embedding_" + network_name,
|
|
type = "mixed",
|
|
size = wordvec_dim,
|
|
bias = False,
|
|
device = -1,
|
|
inputs = TableProjection(slot_names[i] + network_name,
|
|
parameter_name = "embedding.w0",
|
|
decay_rate_l1=l1,
|
|
sparse_remote_update = True,
|
|
sparse_update = sparse_update,
|
|
),
|
|
)
|
|
SimpleRecurrentLayer(
|
|
name = slot_names[i] + "_rnn1_" + network_name,
|
|
size = hidden_dim,
|
|
active_type = "tanh",
|
|
bias = Bias(initial_std = 0,
|
|
parameter_name = "rnn1.bias"),
|
|
input_layer_name = slot_names[i] + "_embedding_" + network_name,
|
|
parameter_name = "rnn1.w0",
|
|
)
|
|
Layer(
|
|
name = slot_names[i] + "_rnnlast_" + network_name,
|
|
type = "seqlastins",
|
|
inputs = [
|
|
slot_names[i] + "_rnn1_" + network_name,
|
|
],
|
|
)
|
|
Layer(
|
|
name = "layer2_" + network_name,
|
|
type = "fc",
|
|
active_type = "tanh",
|
|
size = layer2_dim,
|
|
bias = Bias(parameter_name = "layer2.bias"),
|
|
inputs = [Input(slot_name + "_rnnlast_" + network_name,
|
|
parameter_name = "_layer2_" + slot_name + ".w",
|
|
decay_rate = l2,
|
|
initial_smart = True) for slot_name in slot_names]
|
|
)
|
|
Layer(
|
|
name = "layer3_" + network_name,
|
|
type = "fc",
|
|
active_type = "tanh",
|
|
size = layer3_dim,
|
|
bias = Bias(parameter_name = "layer3.bias"),
|
|
inputs = [
|
|
Input("layer2_" + network_name,
|
|
parameter_name = "_layer3.w",
|
|
decay_rate = l2,
|
|
initial_smart = True),
|
|
]
|
|
)
|
|
Layer(
|
|
name = "output_" + network_name,
|
|
type = "fc",
|
|
size = 1,
|
|
bias = False,
|
|
inputs = [
|
|
Input("layer3_" + network_name,
|
|
parameter_name = "_layerO.w"),
|
|
],
|
|
)
|
|
|
|
|
|
ltr_network("left")
|
|
ltr_network("right")
|
|
Inputs("label")
|
|
Layer(
|
|
name = "label",
|
|
type = "data",
|
|
size = 1,
|
|
)
|
|
Outputs("cost", "qb_rnnlast_left")
|
|
Layer(
|
|
name = "cost",
|
|
type = "rank-cost",
|
|
inputs = ["output_left", "output_right", "label"],
|
|
)
|