You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/sample_trainer_nest_rnn_gen...

74 lines
3.0 KiB

#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
settings(batch_size=15, learning_rate=0)
num_words = 5
beam_flag = get_config_arg('beam_search', bool, False)
sent_id = data_layer(name="sent_id", size=1)
# This layer has no actual use, but only to decide batch_size in generation.
# When generating, at least one Memory in RecurrentLayer MUST have a boot layer.
dummy_data = data_layer(name="dummy_data_input", size=2)
def outer_step(dummy_data):
gen_inputs = [StaticInput(input=dummy_data, size=2, is_seq=True),
GeneratedInput(size=num_words,
embedding_name="wordvec",
embedding_size=num_words)]
def inner_step(dummy_memory, predict_word):
# simplified RNN for testing
with mixed_layer(size=num_words) as layer:
layer += full_matrix_projection(input=predict_word,
param_attr=ParamAttr(name="transtable"))
with mixed_layer(size=num_words, act=ExpActivation()) as out:
out += trans_full_matrix_projection(input=layer,
param_attr=ParamAttr(name="wordvec"))
return out
beam_gen = beam_search(name="rnn_gen",
step=inner_step,
input=gen_inputs,
bos_id=0,
eos_id=num_words-1,
beam_size=2 if beam_flag else 1,
num_results_per_sample=2 if beam_flag else 1,
max_length=10)
return beam_gen
beam_gen_concat = recurrent_group(name="rnn_gen_concat",
step=outer_step,
input=[SubsequenceInput(dummy_data)])
seqtext_printer_evaluator(input=beam_gen_concat,
id_input=sent_id,
dict_file="./trainer/tests/test_gen_dict.txt",
result_file="./trainer/tests/dump_text.test")
#outputs(beam_gen_concat)
# In this config, as dummy_data_input doesn't work on beam_gen (we can find dummy_memory
# is read-only memory, and isn't used by other layers of step), we show the Inputs and Outputs
# as follows. Note that "__beam_search_predict__" is the default output name of beam_search.
Inputs("sent_id","dummy_data_input")
Outputs("__beam_search_predict__")